From 1 - 10 / 50
  • pH is one of the more fundamental soil properties governing nutrient availability, metal mobility, elemental toxicity, microbial activity and plant growth. The field pH of topsoil (0-10 cm depth) and subsoil (~60-80 cm depth) was measured on floodplain soils collected near the outlet of 1186 catchments covering over 6 M km2 or ~80% of Australia. Field pH duplicate data, obtained at 124 randomly selected sites, indicates a precision of 0.5 pH unit (or 7%) and mapped pH patterns are consistent and meaningful. The median topsoil pH is 6.5, while the subsoil pH has a median pH of 7 but is strongly bimodal (6-6.5 and 8-8.5). In most cases (64%) the topsoil and subsoil pH values are similar, whilst, among the sites exhibiting a pH contrast, those with more acidic topsoils are more common (28%) than those with more alkaline topsoils (7%). The distribution of soil pH at the national scale indicates the strong controls exerted by precipitation and ensuing leaching (e.g., low pH along the coastal fringe, high pH in the dry centre), aridity (e.g., high pH where calcrete is common in the regolith), vegetation (e.g., low pH reflecting abundant soil organic matter), and subsurface lithology (e.g., high pH over limestone bedrock). The new data, together with existing soil pH datasets, can support regional-scale decision-making relating to agricultural, environmental, infrastructural and mineral exploration decisions.

  • Spectral data from airborne and ground surveys enable mapping of the mineralogy and chemistry of soils in a semi-arid terrain of Northwest Queensland. The study site is a region of low relief, 20 km southeast of Duchess near Mount Isa. The airborne hyperspectral survey identified more than twenty surface components including vegetation, ferric oxide, ferrous iron, MgOH, and white mica. Field samples were analysed by spectrometer and X-ray diffraction to test surface units defined from the airborne data. The derived surface materials map is relevant to soil mapping and mineral exploration, and also provides insights into regolith development, sediment sources, and transport pathways, all key elements of landscape evolution.

  • Geochemical data from two continental-scale soil surveys in Europe and Australia are presented and compared. Internal project standards were exchanged to assess comparability of analytical results. The total concentration of 26 elements (Al, As, Ba, Ca, Ce, Co, Cr, Fe, Ga, K, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Si, Sr, Th, Ti, V, Y, Zn, and Zr), Loss On Ignition (LOI) and pH are found to be comparable. In addition, for the first time, directly comparable data for 14 elements in an aqua regia extraction (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo, and Pb) are provided for both continents. Median soil compositions are remarkably close, though overall Australian soils are slightly depleted in all elements with the exception of SiO2 and Zr. This is interpreted to reflect the overall longer and, in places, more intense weathering in Australia. Calculation of the Chemical Index of Alteration (CIA) gives a median value of 72% for Australia compared to 60% for Europe. In general, element concentrations vary over 3 (and up to 5) orders of magnitude. Several elements (As, Ni, Co, Bi, Li, Pb, Mn, and Cu) have a lower element concentration by a factor of 2-3 in the soils of northern Europe compared to southern Europe. The break in concentration coincides with the maximum extent of the last glaciation. In Australia the central region with especially high SiO2 concentrations is commonly depleted in many elements. The data provided define the natural background variation for two continents on both hemispheres based on real data. Judging from the experience of these two continental surveys it can be concluded that analytical quality is the key requirement for the success of global geochemical mapping.

  • A weathering intensity index (WII) over the Australian continent has been developed at 100 m resolution using regression models based on airborne gamma-ray spectrometry imagery and the Shuttle Radar Topography Mission (SRTM) elevation data. Airborne gamma-ray spectrometry measures the concentration of three radioelements - potassium (K), thorium (Th) and uranium (U) at the Earth's surface. The total gamma-ray flux (dose) is also calculated based on the weighted additions of the three radioelements. Regolith accounts for over 85% of the Australian land area and has a major influence in determining the composition of surface materials and in controlling hydrological and geomorphological processes. The weathering intensity prediction is based on the integration of two regression models. The first uses relief over landscapes with low gamma-ray emissions and the second incorporates radioelement distributions and relief. The application of a stepwise forward multiple regression for the second model generated a weathering intensity index equation of: WII = 6.751 + -0.851*K + -1.319* Relief + 2.682 * Th/K + -2.590 * Dose. The WII has been developed for erosional landscapes but also has the potential to inform on deposition processes and materials. The WII correlates well with site based geochemical indices and existing regolith mapping. Interpretation of the WII from regional to local scales and its application in providing more reliable and spatially explicit information on regolith properties is described.

  • From 2007 to 2009, the National Geochemical Survey of Australia (NGSA) project collected sediment samples from 1315 sites located in 1186 catchments (~10 % of which were sampled in duplicate) from across Australia. Overbank sediments were chosen as sampling media, with a near-surface sample (Top Outlet Sediment, TOS, from 0-10 cm below the surface) and a bottom sample (Bottom Outlet Sediment, BOS, ~10 cm interval between approximately 60-80 cm below the surface) being collected. The sample sites were selected to be near outlets or spill points of large catchments, so that overbank sediments there could reasonably be assumed to represent well-mixed, fine-grained composite samples of all major rock and soil types present in the catchment. Sample sites and their corresponding sediment samples were subjected to a detailed description and the determination of bulk parameters in the field (texture, moist and dry colour, field pH). This is complemented by a series of laboratory measurements and analyses reported elsewhere. This report documents the complete field dataset and discusses the pH and soil colour data that were collected in the field. At the time of writing, field pH and colour are the only datasets available for all sites. Maps are presented showing the spatial distribution of these data in both TOS and BOS samples. These data will be the basis of further interpretative work.

  • Data gathered in the field during the sample collection phase of the National Geochemical Survey of Australia (NGSA) has been used to compile the Preliminary Soil pH map of Australia. The map, which was completed in late 2009, offers a first-order estimate of where acid or alkaline soil conditions are likely to be expected. It provides fundamental datasets that can be used for mineral exploration and resource potential evaluation, environmental monitoring, landuse policy development, and geomedical studies into the health of humans, animals and plants.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release reference facility to simulate surface emissions of CO2 (and other GHG gases) from an underground slotted horizontal well into the atmosphere under controlled conditions. The facility is located in a paddock maintained by CSIRO Plant and Industry at Ginninderra, ACT. The design of the facility is modelled on the ZERT controlled release facility in Montana, which conducts experiments to develop capabilities and test techniques for detecting and monitoring CO2 leakage. The first phase of the installation is complete and has supported an above ground, point source, release experiment, utilising a liquid CO2 storage vessel (2.5 tonnes) with a vaporiser, mass flow controller unit with a capacity for 6 individual metered gas outlet streams, equipment shed and a gas cylinder cage. Phase 2 involved the installation of a shallow (2m depth) underground 120m horizontally drilled slotted well, in June 2011, intended to model a line source of CO2 leakage from a storage site. This presentation will detail the various activities involved in designing and installing the horizontal well, and designing a packer system to partition the well into six CO2 injection chambers. A trenchless drilling technique used for installing the slotted HDPE pipe into the bore hole will be described. The choice of well orientation based upon the effects of various factors such as topography, wind direction and ground water depth, will be discussed. It is envisaged that the facility will be ready for conducting sub-surface controlled release experiments during spring 2011.

  • This compilation data release is a selection of remotely sensed imagery used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Datasets include: • Mosaic 5 m digital elevation model (DEM) with shaded relief • Normalised Difference Vegetation Index (NDVI) percentiles • Tasselled Cap exceedance summaries • Normalised Difference Moisture Index (NDMI) • Normalised Difference Wetness Index (NDWI) The 5m spatial resolution digital elevation model with associated shaded relief image were derived from the East Kimberley 2017 LiDAR survey (Geoscience Australia, 2019b). The Normalised Difference Vegetation Index (NDVI) percentiles include 20th, 50th, and 80th for dry seasons (April to October) 1987 to 2018 and were derived from the Landsat 5,7 and 8 data stored in Digital Earth Australia (see Geoscience Australia, 2019a). Tasselled Cap Exceedance Summary include brightness, greenness and wetness as a composite image and were also derived from the Landsat data. These surface reflectance products can be used to highlight vegetation characteristics such as wetness and greenness, and land cover. The Normalised Difference Moisture Index (NDMI) and Normalised Difference Water Index (NDWI) were derived from the Sentinel-2 satellite imagery. These datasets have been classified and visually enhanced to detect vegetation moisture stress or water-logging and show distribution of moisture. For example, positive NDWI values indicate waterlogged areas while waterbodies typically correspond with values greater than 0.2. Waterlogged areas also correspond to NDMI values of 0.2 to 0.4. Geoscience Australia, 2019a. Earth Observation Archive. Geoscience Australia, Canberra. http://dx.doi.org/10.4225/25/57D9DCA3910CD Geoscience Australia, 2019b. Kimberley East - LiDAR data. Geoscience Australia, Canberra. C7FDA017-80B2-4F98-8147-4D3E4DF595A2 https://pid.geoscience.gov.au/dataset/ga/129985

  • This dataset was created for the National Geochemical Survey of Australia (NGSA) to help determine the location of target sites for sampling catchment outlet sediments in the lower reach of defined river catchments. Each polygon represents a surface drainage catchment derived from a national scale 9 second (approximately 250 m) resolution digital elevation model. Catchments were extracted from an unpublished, interim version of a nested catchment framework with an optimal catchment area of 5000 km2. Only catchments from the Australian mainland and Tasmania were included. In order to generate catchments approaching the optimal area, catchments with an area of less than 1000 km2 were excluded from the dataset, while other small catchments were amalgamated, and catchments much larger than 5000 km2 were split.

  • Soil mapping at the local- (paddock), to continental-scale, may be improved through remote hyperspectral imaging of surface mineralogy. This opportunity is demonstrated for the semiarid Tick Hill test site (20 km2) near Mount Isa in western Queensland, which is part of a larger Queensland government initiative involving the public delivery of 25,000 km2 of processed airborne hyperspectral mineral maps at 4.5 m pixel resolution to the mineral exploration industry. Some of the "soil" mineral maps for the Tick Hill area include the abundances and/or physicochemistries (chemical composition and crystal disorder) of dioctahedral clays (kaolin, illite-muscovite and Al smectite, both montmorillonite and beidellite), ferric/ferrous minerals (hematite/goethite, Fe2+-bearing silicates/carbonates) and hydrated silica (opal) as well as "soil" water (bound and unbound) and green and dry (cellulose/lignin) vegetation. Validation of these hyperspectral mineral products is based on field sampling and laboratory analyses (spectral reflectance, X-ray diffraction, scanning electron microscope and electron backscatter). The mineral maps show more detailed information regards the surface composition compared with the published soil and geology (1:100,000 scale) maps and airborne radiometric imagery (collected at 200 m line spacing). This mineral information can be used to improve the published mapping but also has the potential to provide quantitative information suitable for soil modeling/monitoring.