From 1 - 10 / 395
  • This is a compilation of all the bathymetry data that GA holds in its database for the area that covers the Diamantina Fracture Zone to the Naturaliste Plateau. This dataset consist of different 6X4 degrees tiles that are: Tiles SI48,SJ48,SK48,SL48, SI47,SJ47, SK47,SL47, SJ46,SK46,SL46, SK45 and SL45)

  • This Bulletin presents the results of a marine geological survey carried out by BMR in the Arafura Sea in 1969 as part of a program of regional geological reconnaissance mapping of the Australian continental shelf. It is a continuation of work in the Timor Sea and northwest shelf (van Andel, Veevers, 1967; Jones, 1968, 1970). The area surveyed is the northern Australian continental shelf between longitudes 130° and 136°E and between latitudes 8° and 12°S (Fig. 1), an area of about 240 000 km-. From 2 to 25 May the Japanese research submersible Yomiuri and its mothership, the converted deepsea tug Yamato, were made available. The major part of the survey lasted from 21 September to 6 December 1969, using the chartered oil-rig supply vessel San Pedro Sound as a platform.

  • Geoscience Australia has recently completed a marine survey in the offshore northern Perth Basin, off Western Australia (Jones et al., 2011b; Jones, 2011c, Upton and Jones, 2011). One of the principal aims of the survey was the collection of evidence for natural hydrocarbon seepage. The survey formed part of a regional reassessment of the basin's petroleum prospectivity in support of frontier exploration acreage Release Area W11-18. This reassessment was initiated under the Australian Government's Offshore Energy Security Program and formed part of Geoscience Australia's continuing efforts to identify a new offshore petroleum province. The offshore northern Perth Basin was identified as a basin with new frontier opportunities. New data demonstrated that proven onshore-nearshore petroleum system is also effective and widespread in the offshore (Jones et al., 2011a). Evidence for a Jurassic petroleum system was also demonstrated in the Release Area W11-18 (Jones et al., 2011a). The marine survey results provide additional support for the presence of an active petroleum system in the northern Perth Basin.

  • Very short News item for ASEG's Preview newsletter announcing the availability of the Tasman Frontier Geophysical Data Base

  • The Capel and Faust basins lie at water depths of 1,500-3,000 m 800 km east of Brisbane. Geoscience Australia began a petroleum prospectivity study of these remote frontier basins with the acquisition of 2D geophysical data (seismic reflection, refraction, gravity, magnetic, multi-beam bathymetry) across an area of 87,000 km2 during 2006/07. The approach mapped the complex distribution of sub-basins and determined sediment thickness through integration of traditional 2D time-domain seismic interpretation techniques with 3D mapping, visualisation and gravity modelling. Forward and inverse 3D gravity models were used to inform the seismic interpretation process and test the seismic basement pick. Gravity models had three sediment layers with inferred average densities of 1.85, 2.13, 2.31 t/m3 overlying a pre-rift basement of density 2.54 t/m3, itself considered to consist of older basin material evidently intruded by igneous rocks. Conversion of travel times of interpreted seismic horizons to depth domain was achieved using a quadratic function derived from ray-tracing forward modelling of refraction data supplemented by stacking interval velocities, and densities for gravity modelling were inferred from the same velocity models. These models suggest sediment of average velocity 3.5 km/s reaches a thickness exceeding 6 km in the northwest of the area, and for the first time mapped the extent and depth of sediment in these basins. The results of the study have confirmed that sediment thickness in the Capel and Faust basins is sufficient in places for potential petroleum generation.

  • This record is a report of the operations carried out during Geoscience Australia Survey 229 off the Australian Antarctic Territory from January-April 2002. The survey acquired deep-seismic and potential field data along 8600 km of profiles as a part of the Australian Antarctic and Southern Ocean Profiling Project.

  • A seabed mapping survey over a series of carbonate banks, intervening channels and surrounding sediment plains on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf was completed under a Memorandum of Understanding between Geoscience Australia and the Australian Institute of Marine Sciences. The survey obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to establish the late-Quaternary evolution of the region and investigate relationships between the physical environment and associated biota for biodiversity prediction. The survey also permits the biodiversity of benthos of the Van Diemen Rise to be put into a biogeographic context of the Arafura-Timor Sea and wider northern Australian marine region. Four study areas were investigated across the outer to inner shelf. Multibeam sonar data provide 100 per cent coverage of the seabed for each study area and are supplemented with geological and biological samples collected from 63 stations. In a novel approach, geochemical data collected at the stations provide an assessment of sediment and water quality for surrogacy research. Oceanographic data collected at four stations on the Van Diemen Rise will provide an understanding of the wave, tide and ocean currents as well as insights into sediment transport. A total of 1,154 square kilometres of multibeam sonar data and 340 line-km of shallow (<100 mbsf) sub-bottom profiles were collected.