From 1 - 10 / 15
  • The product consists of 8,595 line kilometres of time‐domain airborne electromagnetic (AEM) geophysical data acquired over part of the Musgrave Province in South Australia. This product release also includes electrical conductivity depth images derived from the dataset, and the survey operations and processing report. The data were acquired using the airborne High Moment TEMPEST® electromagnetic and magnetic system, which covered a survey area that includes the south western portion of the WOODROFFE 1:250K Map Sheet (Crombie, Carbeena and western half of the Eunyarinna 1:100K Map Sheets); the northwestern portion of the LINDSAY 1:250K Map Sheet (northern half of the Moombunya and Moolalpinna 1:100K map sheets and northwestern quarter of the Willinna 1:100K map sheet). The survey lines where oriented N-S and flown 2km line apart. The survey was funded by the Government of South Australia, as part of the Plan for Accelerating Exploration (PACE) Initiative, through the Department of State Development, (DSD). The survey was managed by Geoscience Australia as part of a national collaborative framework project agreement with SA. The principal objective of this project was to capture a baseline geoscientific dataset to provide further information on the geological context and groundwater resource potential, of the central part of the South Australian Musgrave Province. Geoscience Australia contracted CGG Aviation (Australia) Pty to acquire High Moment TEMPEST® electromagnetic and magnetic data, between August and September 2016. The data were processed and modelled by CGG using its in‐house processing conductivity depth transform techniques. The Musgrave Province in far north of South Australia is one of the last true exploration frontier areas in Australia, which extends into Northern Territory and Western Australia. The Musgrave Province is composed primarily of granulite facies quartzo-feldspathic metasedimentary and meta-igneous rocks, and includes a suite of layered mafic to ultramafic intrusions known as the Giles Complex. This geological setting has proven to be highly prospective for Ni-Cu-PGE mineral systems in the bordering states. A good example of this is the discovery of the Nebo and Babel nickel-copper-PGE sulphide deposits in 2000, followed by a subsequent number of other nickel (Ni), copper (Cu) and gold (Au) discoveries. In South Australia, major discoveries have eluded mineral explorers and exploration activity has fallen behind that of the Northern Territory and Western Australia. This divergence is largely due to issues around land access and a lack of contemporary precompetitive geoscientific information and data. The limited surface mapping combined with extensive regolith cover and incomplete geophysical, geochemical and geochronological data sets make it difficult for new explorers to fully appreciate the full economic potential of the Musgrave Province. The regional AEM survey data will be used to inform the distribution of cover sequences that obscure the basement geology and provide insight into the variation and characteristics of the overlaying sequences. The increased definition in the distribution of cover sequences and their variation and characteristics of the overlaying sequences will allow explorers to better assess exploration opportunities in the area. The new AEM data should also assist in the definition of the groundwater resource potential of the region and help characterise the pre-Pliocene palaeovalley systems known to exist in the region. The selection of the survey area was undertaken through a consultative process involving the CSIRO, Geological Survey of South Australia and the exploration companies currently active in the region (including industry survey partner PepinNini Minerals Ltd). The data will be available from Geoscience Australia’s web site free of charge. It will also be available through the South Australian Government’s SARIG website at https://map.sarig.sa.gov.au. The data will also feed into the precompetitive exploration workflow developed and executed by the GSSA and inform a new suite of value-added products directed at the exploration community.

  • The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory, plus the Normanton and Cloncurry 1:1 Million map sheets in Queensland. The survey was flown at 20 kilometre line spacing and entails approximately 60,000 line kilometres of data in total. The data were acquired in 2017 and 2018 by CGG Aviation (Australia) Pty. Ltd. (CGG), under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. The data were also processed by CGG. This Tranche 1 data release package only contains approximately the first one third (19,500 line kilometres) of the survey data that were acquired between August 4 and October 7, 2017. The AusAEM Year 1 NT/QLD survey also included over 1,500 line kilometres of infill flying, that was funded by private exploration companies, in certain infill blocks within the survey area. These infill blocks and data are not part of this data release due to confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release Package (Tranche 1, Phase 1) contains the final survey deliverables produced by the contractor CGG, including: (a) the operations and processing report, (b) final processed electromagnetic, magnetic and elevation point located line data, (c) final processed electromagnetic, magnetic and elevation grids, (d) conductivity estimates generated by the EM Flow® conductivity depth imaging algorithm, (e) graphical multiplots of line data and EM Flow® conductivity sections, (f) graphical stacked EM Flow® conductivity sections, (h) ESRI shapefiles containing the flight line locations. Future data release packages will contain data flown after October 7 2017 (Tranche 2, etc.) and further derived products (Phase 2, etc.).

  • This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.

  • This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. Geoscience Australia in collaboration with the Geological Survey of New South Wales (GSNSW) has completed AusLAMP data acquisition at 321 sites across the state of NSW. The data were acquired using LEMI-424 instruments and were processed using the Lemigraph software. The processed data in EDI format and report of field acquisition, data QA/QC, and data processing have been released in 2020 (https://pid.geoscience.gov.au/dataset/ga/132148). This data release contains acquired time series data at each site in two formats: 1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format. 2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger. We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148544</b>

  • This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • This animation shows how Magnetotelluric (MT) Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what magnetotelluric (MT) stations and equipment looks like what the equipment measures and how the survey works.

  • This animation shows how Airborne Electromagnetic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animations include a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • <p>Geoscience Australia commissioned the AusAEM Year 1 NT/QLD survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Queensland. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia. The program was designed to investigate the potential mineral, energy and groundwater resources in northern Australia and South Australia. <p>The survey was flown during the 2017-2018 field season, using the TEMPEST® airborne electromagnetic (AEM) system operated by CGG Aviation (Australia) Pty. Ltd under contract to Geoscience Australia. AusAEM Year 1 was acquired with a 20-kilometre line separation and collected over 60,000 line kilometres of data in total. The AusAEM Year 1 NT/QLD survey also includes over 1,500 line kilometres of infill flying, which, was funded by private exploration companies in certain infill blocks within the survey area. The data from these infill blocks are now part of Geoscience Australia release to the public domain, for use in the minerals, energy and groundwater sectors. <p> Previously Released data (Phase 1) <p>In December 2018, we released a package, which contains data from the AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey Phase 1. <p>This data package, with eCat ID 124092 titled “AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey, TEMPEST® airborne electromagnetic data and Em Flow® conductivity estimates”. The package contains a) survey logistics and processing report, b) final processed electromagnetic, magnetic and elevation point located line data, c) processed electromagnetic, magnetic and elevation grids, d) point located conductivity estimates from EM Flow®, e) multi-plots of line data and conductivity sections, all produced by the contractor CGG Aviation (Australia) Pty. These products are downloadable from Geoscience Australia’s website: (See http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_124092). <p>The data provides new insights into vast areas in Northern Australia that have not been extensively explored previously. <p>Current Release (Phase 2) <p>This Phase 2 data release package contains results from inverting the electromagnetic data in the Phase 1 release. The inversion results were generated using Geoscience Australia's sample-by-sample layered-earth (1D) inversion, a deterministic regularized gradient-based algorithm, which we call GALEISBS (Brodie, 2016). <p>For the inversion of TEMPEST AEM data we have conventionally inverted the total (primary plus secondary) measured X-and Z-component data simultaneously to produce a single smooth layered conductivity model. To achieve convergence and derive an acceptable model and acceptable data misfits, we have found that it is necessary to solve for three geometry parameters; (1) Transmitter (Tx) –Receiver (Rx) horizontal in-line and 2) vertical separations and 3) the receiver pitch. This is the case even with the new Rx bird IMU measurements and calibrated data (Ley-Cooper et.al, 2019.). <p>We have extended the GALEISBS functionality to allow inversion of the vector sum of the X- and Z-component data. The rationale of modifying the algorithm is to eliminate the need to solve for Rx pitch, since the vector sum of the X- and Z-component data are insensitive to the Rx pitch. In doing this, we are gaining some robustness by not having to solve for one of the geometry parameters; however, the trade-off is that we are in essence losing the information implicit in the vector component data. <p>The inversions we deliver here we derived from a recently implemented XZ–vector-sum inversion, described in Ley-Cooper et.al, 2019. <p>The GALEISBS inversion products are available for download in parts based on the type of derived product. These are zipped into the following three files: <p>1. galeisbs_vector_sum_point_located_data_ascii.zip <p>2. galeisbs_vector_sum_point_located_data_geosoft.zip <p>3. galeisbs_vector_sum_sctions.zip <p>4. galeisbs_vector_sum_gocad_sgrids.zip

  • <div>Surface magnetic resonance (SMR) techniques image subsurface water using the electromagnetic response of resonant hydrogen nuclei in water. Here we introduce the SMRPInv (Surface Magnetic Resonance Probabilistic Inversion) package, which couples a high-performance forward modeller for SMR data, and a Gaussian process based non-linear Bayesian inversion. Both the forward and inverse codes are part of the freely available, open source HiQGA (High Quality Geophysical Analysis) codebase written entirely in Julia. We summarise the relevant forward physics, the necessary data processing of free induction decay at an SMR sounding, followed by the estimation of subsurface water content with a non-linear parameterisation. Results are presented for synthetic inversions as well as field data from Western Davenport (Northern Territory). Comparisons are made against downhole logging data, together with results from a deterministic inversion of the same SMR soundings. Through this, we demonstrate that a probabilistic approach is key to conceptualising variability of subsurface water content.&nbsp;</div>