From 1 - 5 / 5
  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New data have recently been collected in New South Wales under a National Collaborative Framework agreement between Geoscience Australia and the Geological Survey of New South Wales. This data release contains a preferred resistivity model and associated inversion files for southeast Australia using data from AusLAMP Victoria (Duan & Kyi, 2018), far west NSW (Robertson et al. 2016) and from the rest of New South Wales up to August 2019 (Kyi et al 2020). The original work behind this model can be cited through the following paper which contains discussion on model development and its significance for tectonic evolution and metallogenic potential: Kirkby, A., Musgrave, R.J., Czarnota, K., Doublier, M.P., Duan, J., Cayley, R.A., Kyi, D., 2020. Lithospheric architecture of a Phanerozoic orogen from magnetotellurics: AusLAMP in the Tasmanides, southeast Australia. Tectonophysics, v. 793, 228560.

  • We present a 3‐D inversion of magnetotelluric data acquired along a 340‐km transect in Central Australia. The results are interpreted with a coincident deep crustal seismic reflection survey and magnetic inversion. The profile crosses three Paleoproterozoic to Mesoproterozoic basement provinces, the Davenport, Aileron, and Warumpi Provinces, which are overlain by remnants of the Neoproterozoic to Cambrian Centralian Surperbasin, the Georgina and Amadeus Basins, and the Irindina Province. The inversion shows conductors near the base of the Irindina Province that connect to moderately conductive pathways from 50‐km depth and to off‐profile conductors at shallower depths. The shallow conductors may reflect anisotropic resistivity and are interpreted as sulfide minerals in fractures and faults near the base of the Irindina Province. Beneath the Amadeus Basin, and in the Aileron Province, there are two conductors associated strong magnetic susceptibilities from inversions, suggesting they are caused by magnetic, conductive minerals such as magnetite or pyrrhotite. Beneath the Davenport Province, the inversion images a conductive layer from ∼15‐ to 40‐km depth that is associated with elevated magnetic susceptibility and high seismic reflectivity. The margins between the different basement provinces from previous seismic interpretations are evident in the resistivity model. The positioning and geometry of the southern margin of the crustal conductor beneath the Davenport Province supports the positioning of the south dipping Atuckera Fault as interpreted on the seismic data. Likewise, the interpreted north dipping margin between the Warumpi and Aileron Province is imaged as a transition from resistive to conductive crust, with a steeply north dipping geometry.

  • This animation shows how Airborne Electromagnetic Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animations include a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.

  • This animation shows how Magnetotelluric (MT) Surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what magnetotelluric (MT) stations and equipment looks like what the equipment measures and how the survey works.

  • This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.