From 1 - 10 / 17
  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New datasets have been collected in Northern Australia, as part of Geoscience Australia’s Exploring for the Future (EFTF) program with in-kind contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland. This web service depicts the location of the 155 sites which were used in this study.

  • AusLAMP is a collaborative national project to cover Australia with long-period magnetotelluric (MT) data in an approximately 55 km spaced array. Signatures from past tectonothermal events can be retained in the lithosphere for hundreds of millions of years when these events deposit conductive mineralogy that is imaged by MT as electrically conductive pathways. MT also images regions of different bulk conductivity and can help to understand the continuation of crustal domains down into the mantle, and address questions on the tectonic evolution of Australia. The AusLAMP data presented here were collected as part of three separate collaborative projects involving several organisations. Geoscience Australia (GA), the Geological Survey of South Australia, the Geological Survey of New South Wales, the Geological Survey of Victoria, and the University of Adelaide all contributed staff and/or funding to collection of AusLAMP data; GA and AuScope contributed instrumentation. The data cover the Paleo-Mesoproterozoic Curnamona Province, the Neoproterozoic Flinders Ranges, and the Cambrian Delamerian Orogen, encompassing eastern South Australia and western New South Wales and western Victoria. This project represents the first electrical resistivity model to image the entire Curnamona Province and most of the onshore extent of the Delamerian Orogen, crossing the geographical state borders between South Australia, New South Wales and Victoria.

  • Magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, which is an important element of several mineral systems. New data were collected as part of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) under Geoscience Australia Exploring for the Future (EFTF) program in northern Australian. We use this dataset to demonstrate that the MT method is a valuable tool for mapping lithospheric-scale features and for selecting prospective areas for mineral exploration. Our results image a number of major conductive structures at depths up to ~200 km or deeper in the survey region, for example, the Carpentaria Conductivity Anomaly in east of Mount Isa; and the Tanami Conductive Anomaly along the Willowra Suture Zone. These significant anomalies are lithospheric- scale highly conductive structures, and show spatial correlations with major suture zones and known mineral deposits. These results provide important first-order information for lithospheric architecture and possible large footprint of mineral systems. Large-scale crustal/mantle conductivity anomalies mapping fluid pathways associated with major sutures/faults may have implications for mineral potential. These results provide evidence that some mineralisation occurs at the gradient of or over highly conductive structures at lower crustal and lithospheric mantle depths. These observations provide a powerful means of highlighting greenfields for mineral exploration in under-explored and covered regions.

  • Geoscience Australia (GA), in partnership with State (SA, NSW, VIC, QLD, WA and TAS) and Northern Territory Geological Surveys, has applied the magnetotelluric (MT) technique to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations across Australia through a national MT survey program and regional MT surveys. Most of the data are available at GA’s website. These data provided valuable information for multi-disciplinary interpretations that incorporate various datasets. This release package includes ArcGIS shape files and Excel files of MT station locations for the completed AusLAMP and regional surveys up to December 2017.

  • We present a resistivity model of the southern Tasmanides of southeastern Australia using Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) data. Modelled lower crustal conductivity anomalies resemble concentric geometries revealed in the upper crust by potential field and passive seismic data. These geometries are a key part of the crustal architecture predicted by the Lachlan Orocline model for the evolution of the southern Tasmanides, in which the Proterozoic Selwyn Block drives oroclinal rotation against the eastern Gondwana margin during the Silurian period. For the first time, we image these structures in three dimensions (3D) and show they persist below the Moho. These include a lower crustal conductor largely following the northern Selwyn Block margin. Spatial association between lower crustal conductors and both Paleozoic to Cenozoic mafic to intermediate alkaline volcanism and gold deposits suggests a genetic association i.e. fluid flow into the lower crust resulting in the deposition of conductive phases such as hydrogen, iron, sulphides and/or graphite. The 3D model resolves a different pattern of conductors in the lithospheric mantle, including northeast trending anomalies in the northern part of the model. Three of these conductors correspond to Cenozoic leucitite volcanoes along the Cosgrove mantle hotspot track which likely map the metasomatised mantle source region of these volcanoes. The northeasterly alignment of the conductors correlates with variations in the lithosphere-asthenosphere boundary (LAB) and the direction of Australian plate movement, and may be related to movement of an irregular LAB topography over the asthenosphere. By revealing the tectonic architecture of a Phanerozoic orogen and the overprint of more recent tectono-magmatic events, our resistivity model enhances our understanding of the lithospheric architecture and geodynamic processes in southeast Australia, demonstrating the ability of magnetotelluric data to image geological processes over time.

  • As global metal demands are increasing whilst new discoveries are declining, the magnetotelluric (MT) technique has shown promise as an effective technique to aid mineral systems mapping. Several case studies have shown a spatial correlation between mineral deposits and conductors, with some showing that resistivity models derived from MT are capable of mapping mineral systems from the lithosphere to deposit scale. However, until now, the statistical significance of such correlations has not been demonstrated and therefore hindered robust utilization of MT data in mineral potential assessments. Here we quantitatively analyze resistivity models from Australia, the United States of America (USA), South America and China and demonstrate that there is a statistically-significant correlation between upper mantle conductors and porphyry copper deposits, and between mid-crustal conductors and orogenic gold deposits. Volcanic hosted massive sulfide deposits show significant correlation with upper mantle conductors in Australia. Differences in the correlation pattern between these deposit types likely relate to differences in the chemistry, redox state and location of source mineralizing fluids and magmas, and indicate signatures of mineral system processes can be preserved in the crust and mantle lithosphere for hundreds of millions of years. Appeared in Scientific Reports volume 12, Article number: 8190 (2022), 17 May 2022

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • The NSW component of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), is a collaboration between Geoscience Australia and the Geological Survey of New South Wales which commenced in 2016. Long-period MT data have been recorded at a 55-km spacing in a rolling deployment which to date has completed 224 of a planned 320 sites in NSW. This article summarises the progress of the AusLAMP NSW program and highlights how it is contributing to our understanding of the tectonic architecture in NSW.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales (NSW) magnetotelluric survey is a collaborative project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia. Long period magnetotelluric data are being acquired at 320 sites on a half degree grid spacing across the state of NSW. This record outlines the field acquisition, data QA/QC, and data processing methodologies relating to the 224 sites released in phase one. The data are released in EDI format containing impedance estimates and transfer functions for each processed site.