From 1 - 10 / 23
  • Broadband and audio magnetotelluric (BBMT and AMT) data at 476 sites on a 2 Km grid were acquired in the Cloncurry region between July and November 2016. The survey covered an area of appriximatly 40 km x 60 km on the eastern margin of the Mount Isa Province. The Cloncurry magnetotelluric (MT) project was funded by the Geological Survey of Queensland and is a collaborative project between the Geological Survey of Queensland and Geoscience Australia. Geoscience Australia managed the project and peformed data QA/QC, data analysis, and produced two-dimensional (2D) and three dimensional (3D) inverse models for both the BBMT and AMT data. This report details the field acquisition program and the methodologies used for processing, analysing, modelling and inverting the data.

  • The magnetotelluric (MT) method is increasingly being applied to mineral exploration under cover with several case studies showing that mineral systems can be imaged from the lower crust to the near surface. Driven by this success, the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is delivering long-period data on a 0.5° grid across Australia, and derived continental scale resistivity models that are helping to drive investment in mineral exploration in frontier areas. Part of this investment includes higher-resolution broadband MT surveys to enhance resolution of features of interest and improve targeting. To help gain best value for this investment it is important to have an understanding of the ability and limitations of MT to resolve features on different scales. Here we present synthetic modelling of conductive, narrow, near-vertical faults 500 m to 1500 m wide, and show that a station spacing of around 14 km across strike is sufficient to resolve these into the upper crust. However, the vertical extent of these features is not well constrained, with near-vertical planar features commonly resolved as two separate features. This highlights the need for careful interpretation of anomalies in MT inversion. In particular, in an exploration scenario, it is important to consider that a lack of interconnectivity between a lower crustal/upper mantle conductor and conductors higher up in the crust and the surface might be apparent only, and may not reflect reduced mineral prospectivity. Appeared in Exploration Geophysics Journal 05 Dec 2022

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • The Cloncurry Extension Magnetotelluric (MT) Survey is located north of the township of Cloncurry, in the Eastern Succession of the Mount Isa Province. The survey expands MT coverage to the north and west of the 2016 Cloncurry MT survey. The survey was funded out of the Queensland Government’s Strategic Resources Exploration Program, which aims to support discovery of mineral deposits in the Mount Isa Region. The survey area is predominantly covered by conductive sediments of the Carpentaria Basin. The cover thickness ranges from zero metres in the extreme south west of the survey, to over 345 meters in the north. Acquisition started in August 2019 and was completed in October 2020. The acquisition was managed under an collaborative framework agreement between the Geological Survey of Queensland and Geoscience Australia until April 2020, after which the GSQ took over management of the project. Zonge Engineering and Research Organization were responsible for field acquisition. Data were collected at 2 km station spacing on a regular grid with a target bandwidth of 0.0001 – 1000 s. Instruments were left recording for a minimum of 24 hours unless disturbed by animals. The low signal strength posed a significant impediment for acquiring data to 1000 s, even with the 24 hour deployments. Almost all sites have data to 100 s, with longer period data at numerous sites.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • We have used Audio-frequency Magnetotelluric (AMT) data to characterise cover and to estimate depth to basement for a number of regional drilling programs in geologically different regions across Australia. We applied deterministic and probabilistic inversion methods to derive 2D and 1D resistivity models. We have also used borehole results to ground-truth and validate the resistivity models and to improve geophysical interpretations. In the East Tennant region, borehole lithology and wireline logging demonstrates that the modelled AMT response is due to bulk conductivity/resistivity of the cover and basement rocks. The groundwater in the region is suitable for cattle drinking water, thus is of low overall salinity and is regarded as having little effect on bulk conductivity. Therefore the bulk conductivity/resistivity is due primarily to bulk mineralogy and the success of using the AMT models to predict cover thickness is shown to be dependent on whether the bulk mineralogy of cover and basement rocks are sufficiently different to provide a detectable conductivity contrast, and the sensitivity of the AMT response with increasing depth. In areas where there is sufficient difference in bulk mineralogy and where the stratigraphy is simple, AMT models predict the cover thickness with great certainty, particularly closer to the Earth’s surface. However, the geological system is not always simple, and we have provided examples where the AMT models provide an ambiguous response that needs to be interpreted with other data (e.g. drilling, wireline logging, potential field modelling) to validate the AMT model result. Overall, we conclude that the application of the method has been validated and the results can compare favourably with borehole stratigraphy logs once geological (i.e. bulk mineralogical) complexity is understood. This demonstrates that the method is capable of identifying major stratigraphic structures with resistivity contrasts. Our results have assisted with the planning of regional drilling programs and have helped to reduce the uncertainty and risk associated with intersecting targeted stratigraphic units in covered terrains. <b>Citation:</b> Jiang, W., Roach, I. C., Doublier, M. P., Duan, J., Schofield, A., Clark, A., & Brodie, R. C. Application of audio-frequency magnetotelluric data to cover characterisation – validation against borehole petrophysics in the East Tennant region, Northern Australia. <i>Exploration Geophysics</i>, 1-20, DOI: 10.1080/08123985.2023.2246492

  • The AusLAMP-Victoria magnetotelluric survey was a collaborative project between the Geological Survey of Victoria and Geoscience Australia. Long period magnetotelluric data were acquired at 100 sites on a half degree grid spacing across Victoria in the south-east of Australia between December 2013 and September 2014. Some repeated sites were acquired in December 2017. Geoscience Australia managed the project and performed data acquisition, data processing, and data QA/QC. In this record, the field acquisition, data QA/QC, and data processing methodologies are discussed. A separate report will provide information on data analysis, data modelling/inversion, and data interpretation.

  • We present a resistivity model of the southern Tasmanides of southeastern Australia using Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) data. Modelled lower crustal conductivity anomalies resemble concentric geometries revealed in the upper crust by potential field and passive seismic data. These geometries are a key part of the crustal architecture predicted by the Lachlan Orocline model for the evolution of the southern Tasmanides, in which the Proterozoic Selwyn Block drives oroclinal rotation against the eastern Gondwana margin during the Silurian period. For the first time, we image these structures in three dimensions (3D) and show they persist below the Moho. These include a lower crustal conductor largely following the northern Selwyn Block margin. Spatial association between lower crustal conductors and both Paleozoic to Cenozoic mafic to intermediate alkaline volcanism and gold deposits suggests a genetic association i.e. fluid flow into the lower crust resulting in the deposition of conductive phases such as hydrogen, iron, sulphides and/or graphite. The 3D model resolves a different pattern of conductors in the lithospheric mantle, including northeast trending anomalies in the northern part of the model. Three of these conductors correspond to Cenozoic leucitite volcanoes along the Cosgrove mantle hotspot track which likely map the metasomatised mantle source region of these volcanoes. The northeasterly alignment of the conductors correlates with variations in the lithosphere-asthenosphere boundary (LAB) and the direction of Australian plate movement, and may be related to movement of an irregular LAB topography over the asthenosphere. By revealing the tectonic architecture of a Phanerozoic orogen and the overprint of more recent tectono-magmatic events, our resistivity model enhances our understanding of the lithospheric architecture and geodynamic processes in southeast Australia, demonstrating the ability of magnetotelluric data to image geological processes over time.

  • We present a 3‐D inversion of magnetotelluric data acquired along a 340‐km transect in Central Australia. The results are interpreted with a coincident deep crustal seismic reflection survey and magnetic inversion. The profile crosses three Paleoproterozoic to Mesoproterozoic basement provinces, the Davenport, Aileron, and Warumpi Provinces, which are overlain by remnants of the Neoproterozoic to Cambrian Centralian Surperbasin, the Georgina and Amadeus Basins, and the Irindina Province. The inversion shows conductors near the base of the Irindina Province that connect to moderately conductive pathways from 50‐km depth and to off‐profile conductors at shallower depths. The shallow conductors may reflect anisotropic resistivity and are interpreted as sulfide minerals in fractures and faults near the base of the Irindina Province. Beneath the Amadeus Basin, and in the Aileron Province, there are two conductors associated strong magnetic susceptibilities from inversions, suggesting they are caused by magnetic, conductive minerals such as magnetite or pyrrhotite. Beneath the Davenport Province, the inversion images a conductive layer from ∼15‐ to 40‐km depth that is associated with elevated magnetic susceptibility and high seismic reflectivity. The margins between the different basement provinces from previous seismic interpretations are evident in the resistivity model. The positioning and geometry of the southern margin of the crustal conductor beneath the Davenport Province supports the positioning of the south dipping Atuckera Fault as interpreted on the seismic data. Likewise, the interpreted north dipping margin between the Warumpi and Aileron Province is imaged as a transition from resistive to conductive crust, with a steeply north dipping geometry.