From 1 - 10 / 641
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • <div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • These data represent the OZCHRON database of physical age determinations of Australian rocks, and the radiogenic isotope ratios used in determining the ages. OZCHRON datasets comprise bibliographic references, analytical data and pooled results for samples derived using the Rb-Sr, SHRIMP, U-Pb, and Sm-Nd age determination methods.

  • AusAEM (WA) 2020-21, Earaheedy & Desert Strip Airborne Electromagnetic Survey The accompanying data package, titled “AusAEM (WA) 2020-21,Earaheedy & Desert Strip Airborne Electromagnetic Survey Blocks: TEMPEST® airborne electromagnetic data and GALEI conductivity estimates”, was released on 25 March 2021 by Geoscience Australia (GA) and the Geological Survey of Western Australia. The data represents the first phase of the AusAEM2020 (WA) survey flown with a fixed-wing aircraft by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. The survey was flown at a 20-kilometre nominal line spacing over the most eastern part of the state and down to the southern coast of Western Australia. The total area encompasses close to 32,680 line kilometres of newly acquired airborne electromagnetic geophysical data. CGG also processed the data. This package contains 14,279 line kilometres of the survey data, which have been quality-controlled, processed and inverted. The Earaheedy Block entailed approximately 6,407 line kilometres and the Desert Strip 7,870 line kilometres. The remaining data will be released as a separate package. Geoscience Australia and Western Australia (Department of Mines, Industry Regulation and Safety) commissioned the AusAEM 2020 survey as part of the national airborne electromagnetic acquisition program, to complete 20km line separation AEM coverage over WA. The program is designed to deliver freely available pre-competitive geophysical data to assist in the investigation and discovery of potential mineral, energy and groundwater resources within Australia. Funding for the survey came from the Western Australian government’s Exploration Incentive Scheme. GA managed the survey data acquisition, processing, contracts, quality control of the survey and generated the inversion products included in the data package. The data release package contains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shapefiles for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivity-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivity-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • The coverage of this dataset is over the WestNarranLake region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation, water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 CI ) vertical and 0.8m ( 95 CI ) horizontal with a minimum point density of one laser pulse per square metre . For more information on the datas accuracy, refer to the lineage provided in the data history .

  • Project In 2013, Geoscience Australia commissioned AAM to undertake a LiDAR survey with accompanying field survey and ortho imagery capture over the Macintyre river region comprising approx 7,500 square kilometres. Ref Deed CMC G3298 Contract CMC G4417. Collection of both LiDAR and simultaneous and near simultaneous imagery utilising the Optech ALTM Pegasus HA500 sensor and the Vision Map A3 digital camera occurred from 06 November 2013 to 17th December 2013 with a total of 20 LiDAR flights plus a very small infill (LiDAR only) flight on 17th March 2014. The LiDAR was controlled from existing CORS GPS stations and 3 newly setup reference GPS station. 158 test point sites that overlapped the LiDAR were surveyed by AAM using Kinematic Smartnet GPS. The specification for this survey was provided in the aforementioned contract document Data The LiDAR, Ortho and field surveys conform in accuracy, format and nomenclature conform to the above specification. The ortho imagery comprises 0.20m GSD RGB Geotiff imagery in Geotiff and ECW formats. The area spans MGA zones 55 and 56 products have been generated with an overlap as per the specification and nomenclature advice from the client.

  • A multi-agency collaboration between Australian government partners has been working towards making continent-scale, public, web-accessible and GIS-compatible ASTER geoscience maps. CSIRO along with Geoscience Australia and several state government agencies, (including GSWA, GSQ, DMITRE and NTGS), have developed methodology and produced 15 geoscientific products, with applications for mineral mapping and exploration, soil-mapping, environment and agricultural sectors. This work represents the largest ASTER mosaic of this type in the world and sets a new benchmark for state-to-continent scale spectral remote sensing. The project is supported both nationally and internationally by the ASTER Science Team, ERSDAC, NASA and the USGS. Outcomes include the formation of a platform for establishing national standards; geoscience product nomenclature; processing methods; accuracy assessments; and traceable documentation. Detailed product notes outline these standards and provide significant knowledge transfer for existing and new users of this type of data. Hyperion satellite hyperspectral imagery has been critical for calibration and validation of the processed ASTER data, reduction to 'surface' reflectance using independent validation data such as Hyperion, and calculating statistics to generate regression coefficients, reduces errors in the ASTER instrument and increases reliability and corroboration of spectral responses.

  • <p>The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory and the Normanton and Cloncurry 1:1 Million map sheets in Queensland. CGG Aviation (Australia) Pty. Ltd. flew the 67,700-line kilometre survey between 2017 and 2018 using the TEMPEST® airborne electromagnetic system. Flown at 20-kilometre line spacing, data were acquired and processed under contract to Geoscience Australia. <p>This data package supersedes and replaces two earlier releases: June 11, 2018, and December 2018 (eCatID 120948) with revised calibrations and processing. Along with the regionally spaced (20 km) flight lines, it now includes 1,500 line kilometres of infill flying that was funded by private exploration companies and not previously released in view of time-bounded confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release (Phase 1) Package contains the final survey deliverables produced by the contractor CGG, including: <p>a) The operations and processing report. <p>b) Final processed electromagnetic, magnetic and elevation point located line data. <p>c) Final processed electromagnetic, magnetic and elevation grids. <p>d) Conductivity estimates generated by the EM Flow® conductivity depth-imaging algorithm. <p>e) Graphical multi-plots of line data and EM Flow® conductivity sections. <p>f) Graphical stacked EM Flow® conductivity sections. <p>g) ESRI shape-files containing the flight line locations. <p>An updated release package (Phase 2), which contains results from our in-house inversion of the EM data (from this Phase 1 release), which includes the regional and infill areas are downloadable from the link provided in the Downloads tab.

  • North Adelaide Lidar

  • Adelaide LiDAR 2008 data was flown by AAMHatch between 13th to 19th September 2008 as part of the Urban Digital Elevation Modelling in High Priority Areas Project funded by the Federal Department of Climate Change. Several data gaps existed in the intital survey due to operational instrumentation errors and a subsequent refly was conducted on 5th January 2009 to complete the dataset. The data was captured with point density of 0.8m point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence level). The data are available as mass point files (LAS) comprising ground, thinned ground and non ground points in 2km tiles. A hydrologically conditioned and drainage enforced 2m DEM or HDEM has also been developed in 2010 as part of the Urban DEM project managed by the CRC for Spatial Information and Geoscience Australia. The HDEM was produced by SKM using the ANUDEM program. The HDEM ensures that primary stream/channel flow, and water flow across the land surface are accurately represented. The hydrologically enforced elevation model should be used for any water modelling. Adelaide Hydrological Enforced DEM(HDEM) 2008