From 1 - 10 / 121
  • A major concern for regulators and the public with geological storage of CO2 is the potential for the migration of CO2 via a leaky fault or well into potable groundwater supplies. Given sufficient CO2, an immediate effect on groundwater would be a decrease in pH which could lead to accelerated weathering, an increase in alkalinity, release of major and minor ions and heavy metals (particularly Pd, Ni and Cr) as well as CO2 mobilisation of trace organic contaminants. These scenarios potentially occur in a high CO2 leakage event, therefore detection of a small leak, although barely perceptible, could provide an important early warning for a subsequent and more substantial impact. Different approaches are required for the detection and quantification of these low level leaks and are the subject of this paper. A 3 year groundwater survey was recently completed in the Surat Basin, which provided comprehensive water and isotopic analysis of groundwaters together with their exsolved gases. The gases were analysed for composition, -13CCO2, -13CCH4 and -2HCH4. Methane is prevalent in the major Surat Basin aquifers (e.g. Mooga, Gubberamunda and Hutton sandstones) and is invariably associated with a bacterial (methanogenic) carbonate reduction source, evident from its isotopic signature ('13CCH4 ~ -70', '2HCH4 ~ -220'). In addition to methane and low levels of CO2, trace ethane is common. Two neighbouring wells, however, were quite different to the other 85 wells surveyed. Their exsolved gases contained comparatively high ethane, but also C1-C6 hydrocarbons in addition to methane. Methane isotope systematics were significantly different from other groundwater wells completed in the same formation. The -13C of the CO2 was similar to the surrounding groundwater wells, but the relative proportion of CO2 in the gas was significantly higher. Combined, these characteristics are consistent with hydrocarbon biodegradation. There was little difference in the groundwater chemistry for these wells compared to the regional baseline. The study provides a useful analogue study for detection, at various scales, of a leaky well associated with a geological storage site. Compositional and isotopic analysis of exsolved gases from groundwater samples could be used to demonstrate non-equilibrium conditions and intrusion of exogenic CO2. Abstract for the 2013 International Association of Hydrologist Congress, Perth

  • The Collaborative Australian Protected Areas Database (CAPAD) 2012 provides both spatial and text information about government, Indigenous and privately protected areas for continental and marine Australia. State and Territory conservation agencies supplied data, current to 31 December 2012, to Australian Government Department of the Environment.

  • As a participating organisation in the Global Mapping Project, and following discussions held at the 22nd meeting of the International Steering Committee for Global Mapping (ISCGM), the Secretariat of the ISCGM has requested the assistance of Geoscience Australia in the validation of intermediate products of global land cover, the Global Land Cover by National Mapping Organisation (GLCNMO) version 3. The request sent to Geoscience Australia involves the use of existing maps and other materials, based on expertise and knowledge to report the validation of the GLCNMO version 3 datasets.

  • In June 2012 Geoscience Australia was commissioned by Commonwealth Scientific and Industrial Research Organisation (CSIRO) to undertake detailed wind hazard assessments for 14 Pacific Island countries and East Timor as part of the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program. PACCSAP program follows on from work Geoscience Australia did for the Pacific Climate Change Science Program (PCCSP) looking at CMIP3 generation of climate models. The objective of this study is to improve scientific knowledge by examining past climate trends and variability to provide regional and national climate projections. This document presents results from current and future climate projections of severe wind hazard from tropical cyclones for the 15 PACCSAP partner countries describing the data and methods used for the analysis. The severe wind hazard was estimated for current (1981 to 2000) and future (2081 to 2100) climate scenarios. Tropical-cyclone like vortices from climate simulations conducted by CSIRO using six Coupled Model Intercomparison Project phase 5 (CMIP5) models (BCC-CSM1.1, NorESM1-M, CSIRO-Mk3.6, IPSL-CM5A, MRI-CGM3 and GFDL-ESM2M) as well as the International Best Track Archive for Climate Stewardship were used as input to the Geoscience Australia's Tropical Cyclone Risk Model to generate return period wind speeds for the 15 PACCSAP partner countries. The Tropical Cyclone Risk Model is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. The 500-year return period wind speed is analysed and discussed into more details in this report, since it is used as a benchmark for the design loads on residential buildings. Results indicate that there is not a consistent spatial trend for the changes in 500-year cyclonic wind speed return period when CMIP5 models are compared individually. BCC-CSM1M and IPSL-CM5A presented an increase in the annual TC frequency for East Timor, northern hemisphere and southern hemisphere. On the other hand, NorESM1M showed a decrease in the annual TC frequency for the same areas. The other three models showed a mixed of increase and decrease in their annual TC frequency. When CMIP5 models were analysed by partner county capitals for the 500-year cyclonic wind speed return period, IPSL-CM5A and GFDL-ESM2M models presented an increase in the cyclonic wind speed intensity for almost all capitals analysed with exception of Funafuti (GFDL-ESM2M), which presented a decrease of 0.7% and Honiara (IPSL-CM5A) with a decrease of 1.6%. The tropical cyclone annual frequency ensemble mean indicates an increase in the tropical cyclone frequency within all three regions considered in this study. When looking at individual capitals, a slight increase in the 500-year return period cyclonic wind speed ensemble mean varying between 0.8% (Port Vila) to 9.1% (Majuro) is noticed. A decline around 2.4% on average in the 500-year return period cyclonic wind speed ensemble mean is observed in Dili, Suva, Nukualofa and Ngerulmud. The ensemble spatial relative change did not show any particular consistency for the 500-year cyclonic wind speed. Areas where Marshall Islands and Niue are located presented an increase in the 500-year cyclonic wind speed while a decrease is observed in areas around South of Vanuatu, East of Solomon Islands, South of Fiji and some areas in Tonga. The information from the evaluation of severe wind hazard from tropical cyclones, together with other PACCSAP program outputs, will be used to build partner country capacity to effectively adapt and plan for the future and overcome challenges from climate change.

  • The National Exposure Information System (NEXIS) is a unique modelling capability designed by Geoscience Australia (GA) to provide comprehensive and nationally-consistent exposure information in response to the 2003 COAG commitment to cost-effective, evidence-based disaster mitigation. Since its inception, NEXIS has continually evolved to fill known information gaps by improving statistical methodologies and integrating the best publically-available data. In addition to Residential, Commercial and Industrial building exposure information, NEXIS has recently expanded to include exposure information about agricultural assets providing a wider understanding of how communities can be affected by a potential event. GA's collaboration with the Attorney General's Department (AGD) has involved the consolidation of location-based data to deliver consistent map and exposure information products. The complex information requirements emphasised the importance of having all relevant building, demographic, economic, agriculture and infrastructure information in NEXIS available in a clear and unified Exposure Report to aid decision-makers. The Exposure Report includes a situational map of the hazard footprint to provide geographic context and a listing of detailed exposure information consisting of estimates for number and potential cost of impacted buildings by use, agricultural commodities and cost, the number and social vulnerability of the affected population, and the number and lengths of infrastructure assets and institutions. Developed within an FME workbench, the tool accepts hazard footprints and other report specifics as input before providing an HTML link to the final output in approximately 5 minutes. The consolidation of data and streamlining of exposure information into a simple and uniform document has greatly assisted the AGD in timely evidence-based decision-making during the 2014-15 summer season.

  • Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities - ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway).

  • With improving accessibility to Antarctica, the need for proactive protection and management of sites of intrinsic scientific, historic, aesthetic or wilderness value is becoming increasingly important. Environmental protection and conservation practise in the Antarctic is globally unique and is managed by provisions contained within the Antarctic Treaty. Whilst these provisions have been primarily utilised to protect sites of biological or cultural significance, sites of geological or geomorphological significance may also be considered. However, in general, sites of geological and geomorphological significance are underrepresented in conservation globally, and, particularly, in Antarctica. Wider recognition of sites of geological significance in Antarctica can be achieved by development of a geo-conservation register, similar to geological themed inventories developed elsewhere in the world, to promote and recognise intrinsically valuable geological and geomorphological sites. Features on the register that are especially fragile, or otherwise likely to be disturbed, threatened or become vulnerable by human activity, can be identified as such and area management protocols for conservation, under the Antarctic Treaty, can be more readily invoked, developed and substantiated. Area management should mitigate casual souveniring, oversampling and accidental or deliberate damage caused by ill-advised construction or other human activity. The recognition of significant geological and geomorphological features within the Antarctic, and their protection, is identified under the current Australian Antarctic Science Strategic plan (under Stream 2.2; Vulnerability and spatial protection)

  • Abstract for a Poster for the CO2CRC Symposium 2013: Atmospheric tomography is a CO2 quantification and localisation technique that uses an array of sampling points and a Bayesian inversion method to solve for the location and magnitude of a CO2 leak. Knowledge of a normalized three-dimensional dispersion plume is required in order to accurately model a leak using many meteorological parameters. A previous small scale (~20 m) study using a high precision Fourier Transform Infrared found that the emission rate was determined to within 3% of the actual release rate and the localisation within 1 m of the correct position. The technique was applied during the CO2CRC Otway Stage 2B residual saturation and dissolution test in August-October 2011. A network of eight independent CO2 sensors (Vaisala GMP343 CO2 probes) were positioned at distances ranging from 154 to 473 m from the well. A 3D sonic anemometer within the measurement area collected wind turbulence data. The results of the study indicate that, through careful data processing, measurements from the reasonably inexpensive (but lower accuracy and lower precision) CO2 sensor array can provide useful data for the application of atmospheric tomography. Results have found that the low precision of the sensors over time becomes a problem due to sensor drift. A reference measurement of CO2 helps to resolve this problem and improves the perturbation signal during data processing. Preliminary inversion modeling results will be shown to show the best estimation of locating a CO2 leakage source for the Otway Stage 2B residual saturation and dissolution test. CO2CRC Symposium 2013, Hobart

  • Data from surveys along the East Antarctic margin will be presented to provide insights into the diversity and distribution of benthic communities on the continental shelf and slope, and their relationship to physical processes. Seabed video and still imagery collected from the George V shelf and slope and the sub-ice shelf environment of the Amery Ice Shelf indicate that the benthic communities in these regions are highly diverse, and are strongly associated with the physical environment. Variations in seafloor morphology, depth, sediment type and bottom circulation create distinct seabed habitats, such as muddy basins, rugged slope canyons and scoured sandy shelf banks, which are, in turn, inhabited by discrete seabed communities. The infauna dominated muddy basins contrast sharply with the diverse range of filter-feeding communities that occur in productive canyons and rugged inner shelf banks and channels. In the sub-ice shelf environment, differences in organic supply, linked to the circulation patterns, cause distinct differences in the seabed communities. The strong association between benthic communities and seafloor characteristics allows physical parameters to be used to extend our knowledge of the nature of benthic habitats into areas with little or no biological data. Comprehensive biological surveys of benthic communities in the East Antarctic region are sparse, while physical datasets for bathymetry, morphology and sediment composition are considerably more extensive. Physical data compiled within the proposed network of East Antarctic Marine Protected Areas (MPAs) is used to aid our understanding of the nature of the benthic communities. The diversity of physical environments within the proposed MPAs suggests that they likely support a diverse range of benthic communities.

  • The potential for using a single high precision atmospheric station for detecting CO2 leaks has been investigated using a variety of statistical approaches. Geoscience Australia and CSIRO Marine and Atmospheric Research installed an atmospheric monitoring station, Arcturus, in the Bowen Basin, Australia, in 2010 and have collected over 3 years' worth of atmospheric concentration measurements. The facility is designed as a prototype remote baseline monitoring station that could be deployed in areas targeted for commercial scale geological storage of carbon dioxide. Two Picarro gas analysers are deployed in the station to continuously monitor CO2, CH4 and CO2 isotopes. An automated weather station and an eddy covariance flux tower have also been installed at the site. Atmospheric CO2 perturbations, from simulated leaks, have been modelled to determine the minimum statistically significant emissions that can be detected above background concentrations at Arcturus. CO2 leakage was simulated from January to December (2011) using a 3D-coupled prognostic meteorological and pollutant dispersion model (TAPM). Simulations were conducted for various locations, emission rates and distances (1-10 km) from the station. The simulated leaks were simulated using an area source (100 m x 100 m) and a point source located in the optimum wind direction (SSE), which showed the largest perturbation. To better understand the observed CO2 signal, a statistical model combining both a regression and time series model was constructed. The regression model is a time dependent generalised additive model relating the CO2 to other observed atmospheric variables (e.g. wind speed, temperature, humidity). It accounts for seasonal trends through the inclusion of dummy variables. The time series model is based on a seasonal auto-regressive integrated moving average (ARIMA) model, but with the additional complexity of allowing auto-regressive relationships to depend on the time of day. A non-parametric goodness of fit approach using the Kolmogorov-Smirnoff (KS) test was then used to test whether simulated perturbations can be detected against the modelled expected value of the background for certain hours of the day and for particular seasons. The developed regression model allows us to pre-whiten the CO2 time series. Pre-whitening reduces both the variance and skew of the marginal distribution of the signal. This improves the power of the Kolmogorov-Smirnoff (KS) test when attempting to detect simulated perturbations against the background signal. The KS test calculates the probability that the modelled leak perturbation could be caused by natural variation in the background. For hours between 10am and 2pm in the winter of 2011, minimum detectable leaks located 1km from the measurement station improve from 44 to 22 tpd for an area source and 33 to 14 tpd for a point source at a p-value of 0.05. These are very large leaks located only 1 km from the station. Additionally, this approach results in a high false alarm rate of 56%. An alternative p-value could be chosen to reduce the false alarm rate but the overall conclusion is the same. A long term, single measurement station monitoring program that is unconstrained by prior information on possible leaks, and based on detection of perturbations of CO2 alone due to leakage above a (noisy) background signal, is likely to take one or more years to detect leaks of the order of 10kt p.a.