From 1 - 10 / 88
  • The AGSO Yearbooks retained the format of the BMR Yearbooks, the title change merely following the renaming of the Bureau to the Australian Geological Survey Organisation in 1992. The series ended in 1994, when AGSO became part of the Department of Primary Industries and Energy and information on its activities was incorporated into DPIE Annual Reports.

  • This dataset contains all multibeam bathymetry data held by Geoscience Australia (GA) dating back to survey obtained since 1993. <b>Value: </b>Bathymetry data is used for a wide range of marine applications including: navigation, environmental assessment, jurisdictional boundaries, resource exploration. <b>Scope: </b>Data holdings lying within the offshore area of Australia, including international waters. <b> To access the AusSeaBed Marine Data Portal </b> use the following link: <a href="https://portal.ga.gov.au/persona/marine#/">https://portal.ga.gov.au/persona/marine#/</a>

  • A collection of NetCDF files containing ground gravity point data that is organised by survey. The files are derived from the Australian National Gravity Database (ANGD), and formatted in such a way as to provide highly efficient, analysis ready data. The data covers the onshore Australian continent, and dates from 1947 until June 2019. Surveys acquired after June 2019 are not included in this collection, but are available via the Data & Publication search or the Geophysical Archiving and Data Delivery System (GADDS).

  • On behalf of Australia, and in support of the Malaysian accident investigation, the Australian Transport Safety Bureau (ATSB) led search operations for missing Malaysian Airlines flight MH370 in the Southern Indian Ocean. Geoscience Australia provided advice, expertise and support to the ATSB to facilitate marine surveys, which were undertaken to provide a detailed map of the sea floor topography to aid navigation during the underwater search. Prior to the Phase 1 bathymetric survey, very little was known about the sea floor in the MH370 search area, as few marine surveys have taken place in the area. Existing maps of the sea floor were coarse, having been derived from satellites and only providing a general indication of water depth. Before the underwater search for MH370 could begin, it was necessary to accurately map the sea floor to ensure that the search was undertaken safely and effectively. Survey vessels spent months at sea, scanning the sea floor with multibeam sonar and side scan sonar to gather detailed, high-resolution data. This collation of datasets on the National Computational Infrastructure contains the high resolution raw and processed data acquired during Phase 2 of the search for MH370 as received by third party operators. The Phase 2 underwater search data was acquired by multiple vessels, including the Fugro Equator, Fugro Supporter, Fugro Discovery, Havila Harmony, Dong Hai Jiu 101 and Go Phoenix. Surveys were conducted using towed and autonomous underwater vehicles between September 2014 to January 2017, collecting over 121,000 square kilometres of high resolution data in the search area. All material and data from this access point is subject to copyright. Please note the creative commons copyright notice and relating to the re-use of this material. Geoscience Australia's preference is that you attribute the datasets (and any material sourced from it) using the following wording: Source: Governments of Australia, Malaysia and the People's Republic of China, 2018. MH370 Phase 2 data - Raw and processed. For additional assistance, please contact marine@ga.gov.au. We honour the memory of those who have lost their lives and acknowledge the enormous loss felt by their loved ones.

  • The national standard lexicon of geologic units, including: age, lithology, geologic relationships for all Australian geological units, and a record of their use in literature. Links to Geological Provinces and Geological Maps. The collection is maintained by Geoscience Australia on behalf of the Australian Stratigraphy Commission, a standing committee of the Geological Society of Australia. <b>Value: </b>The lexicon standardises terminology for geologic units, thereby enabling integration of different geologic studies and datasets. <b>Scope: </b>Covers all Australian Territories, including Australia's Antarctic Territories. The database contains over 17,500 current stratigraphic names and over 36,000 variations, most of which are superseded, obsolete, or misspelt versions of the current names. The publicly accessible portion of this collection is made available through the Australian Stratigraphic Units Database (ASUD), the national authority on stratigraphic names in Australia and can be accessed here: <a href="https://pid.geoscience.gov.au/dataset/ga/21884">https://pid.geoscience.gov.au/dataset/ga/21884</a>

  • Benfield and Geoscience Australia intend to collaborate to improve their respective understanding of risks from natural hazards in Australia. The aim of this project is to exchange ideas, data and models in order to support the respective groups risk modeling expertise.

  • The BMR Yearbooks followed on from and retained the format of the final BMR Annual Report. The 1977 yearbook did not use that word in its title, which was simply BMR77. Later volumes followed this pattern, but added the subtitle: Yearbook of the Bureau of Mineral Resources, Geology and Geophysics, and in common usage they became known as the BMR (later AGSO) Yearbooks.

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on derived or value-added products. Example products include: Fractional Cover (FC), Australian Geographic Reference Image (AGRI), and InterTidal Extents Model (ITEM) etc.

  • Wind multipliers are factors that transform wind speeds over open, flat terrain (regional wind speeds) to local wind speeds that consider the effects of direction, terrain (surface roughness), shielding (buildings and structures) and topography (hills and ridges). During the assessment of local wind hazards (spatial significance in the order 10's of metres), wind multipliers allow for regional wind speeds (order 10 to 100's of kilometres) to be factored to provide local wind speeds. <b>Value: </b>The wind multiplier data is used in modelling the impacts (i.e. physical damage) of wind-related events such as tropical cyclones (an input for Tropical Cyclone Risk assessment), thunderstorms and other windstorms. <b>Scope: </b>Includes terrain, shielding and topographic multipliers for national coverage. Each multiplier further contains 8 directions.

  • This is a physical collection of photographic materials created by staff of Geoscience Australia (GA) and its predecessor organisations in the course of their work between the early 1920s and the early 21st century. <b>Value: </b>Historic and scientific significance. Many sites visited are remote and have rarely been revisited. Some images are of people from First Nations, flora and fauna of Australia, its territories and other countries. <b>Scope: </b> Geographical scope is largely Australia, pre- and post-Independence Papua New Guinea, and the Australian Antarctic Territory, but other countries and territories are represented. Thematic scope varies considerably, covering a diverse range of operations of a geological survey, including land and marine surveys, field installations, rock and fossil specimens (in situ, laboratory and under microscope), buildings, passport photographs, etc. The majority of the physical image collection (photos, negatives and glass plates) is still hardcopy only and stored in an access restricted room. This collection requires extensive work to develop a comprehensive catalogue of its contents and explore options for digitisation. <b>Queries can be directed to Records Management Unit (RMU) via the <a href="https://supportworkplace.ga.gov.au/CherwellPortal/Geoscience/">Support Workplace tool</a>. </b> More recent mages received from business area's and departing staff members have been digitised and are stored in HPRM folders: P14/50 - GA Image Collection (A20/615, A20/614, A20/598, A18/111) A spreadsheet containing metadata (D2019-4576) for these images (previously delivered via a now decommissioned database), can be viewed via the Download tab. Note: This HVC record is currently only visible to internal GA staff. <b>If anyone has any additional photographic collections that reflect the history of Geoscience Australia (or its predecessor organisations) the Records Management Unit would be very interested in chatting to you.</b>