model
Type of resources
Keywords
Publication year
Scale
Topics
-
This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the graptolite Monograptus exiguus. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.
-
This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the trilobite Batocara mitchelli. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.
-
This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the brachiopod Retziella capricornae. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.
-
This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the brachiopod Atrypa duntroonensis. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.
-
Communities and their economic activity rely heavily on critical infrastructure. Utility infrastructure facilities are usually comprised of a range of interconnected components characterised by varying degrees of operational criticality and vulnerability to earthquake ground motion. The severity of damage to these components in an earthquake has complex implications for post-event functionality, repair cost and recovery timeframe of facilities. This paper describes how an integration of physical component vulnerability, associated component functionality and a system model of the facility have been used to understand the seismic vulnerability and mitigation opportunities associated with a thermal power station. System behaviour of the facility has been analysed using a network model to evaluate facility performance and to assess component criticality. An application has been developed that integrates these elements in a Monte Carlo simulation that enables the outcomes of a broad set of events to be assessed, and is used to develop facility level fragility models. Finally, the benefits of this approach to the process of assessment of vulnerability of legacy assets and identification of mitigation opportunities are demonstrated.
-
The Galilee Basin Hydrogeological Model is a numerical groundwater flow model of the Galilee subregion in Queensland, an area of approximately 300,000 square kilometres. The model encompasses the entire geological Galilee Basin as well as parts of the overlying Eromanga Basin and surficial Cenozoic sediments. The model includes aquifers that form part of the Great Artesian Basin (specifically those aquifers in the Eromanga Basin), a hydrogeological system of national significance (see Evans et al 2018). The development of the Galilee Basin Hydrogeological Model represented an ambitious, first-pass attempt to better understand potential regional-scale cumulative groundwater impacts of seven proposed coal mines in the Galilee Basin (as known circa 2014, see Lewis et al. 2014 for details). This work was commissioned as part of the bioregional assessment for the Galilee subregion (https://www.bioregionalassessments.gov.au/assessments/galilee-subregion). Geoscience Australia has made the flow model and associated datasets available to support further academic or research investigations within the region. Importantly though, due to a number of limitations and assumptions (outlined in the final model report, Turvey et al., 2015), the model is not suitable for decision-making in relation to water resource planning or management. Further, the model was not developed to predict potential groundwater impacts of any individual mining operations, but provides a regional cumulative development perspective. The groundwater model and associated report were produced by HydroSimulations under short-term contract to Geoscience Australia in 2015. The report is referenced in several products released as part of the bioregional assessment (BA) for the Galilee subregion. However, due to the size, complexity and limitations of this model, this model was not used as the primary groundwater modelling input for the Galilee BA. Further detail about the key modelling limitations and why it was unsuitable for use in the Galilee BA are outlined in the BA Groundwater modelling report (Peeters et al., 2018). References Evans T, Kellett J, Ransley T, Harris-Pascal C, Radke B, Cassel R, Karim F, Hostetler S, Galinec V, Dehelean A, Caruana L and Kilgour P (2018) Observations analysis, statistical analysis and interpolation for the Galilee subregion. Product 2.1-2.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.1-2.2. Lewis S, Cassel R and Galinec V (2014) Coal and coal seam gas resource assessment for the Galilee subregion. Product 1.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. https://www.bioregionalassessments.gov.au/assessments/12-resource-assessment-galilee-subregion. Peeters L, Ransley T, Turnadge C, Kellett J, Harris-Pascal C, Kilgour P and Evans T (2018) Groundwater numerical modelling for the Galilee subregion. Product 2.6.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.6.2. Turvey C, Skorulis A, Minchin W, Merrick NP and Merrick DP (2015) Galilee Basin hydrogeological model Milestone 3 report for Geoscience Australia. Prepared by Heritage Computing Pty Ltd trading as Hydrosimulations. Document dated 16 November 2015. http://www.bioregionalassessments.gov.au/sites/default/files/galilee-basin-hydrological-model-pdf.pdf. <b>The model is available on request from clientservices@ga.gov.au - Quote eCat# 146155</b>
-
As part of Geoscience Australia’s Exploring for the Future Program, Broadband and Audio Magnetotelluric (MT) data were acquired at 131 stations in the East Tennant region, Northern Territory, in 2019. This survey aimed to characterise major crustal structures, to map cover thickness to assist in stratigraphic drill targeting, and to help understand mineral potential in the region. The data package was released in December 2019 (http://dx.doi.org/10.26186/5df80d8615367) and the 3D resistivity model was released in March 2020 (https://pid.geoscience.gov.au/dataset/ga/135011). We applied a probabilistic approach to inverting high-frequency MT data for cover thickness estimation using the 1D Rj-McMCMT code, newly developed in Geoscience Australia. The inversion employs multiple Markov chains in parallel to generate an ensemble of millions of resistivity models that adequately fit the data given the assigned noise levels. The algorithm uses trans-dimensional Markov chain Monte Carlo techniques to solve for a probabilistic resistivity-depth model. Once the ensemble of models is generated, its statistics are analysed to assess the posterior probability distribution of the resistivity at any particular depth, as well as the number of layers and the depths of the interfaces. This stochastic approach gives a thorough exploration of the model space and a more robust estimation of uncertainty than deterministic methods allow. This release package includes the results of probabilistic inversion of Audio Magnetotelluric data at the 131 stations. They can be used to estimate cover thickness for drill site planning, and to map the base of geological basins in the region. Model data files are large, but can be made available on request to clientservices@ga.gov.au.
-
<p>The footprint of a mineral system is potentially detectable at a variety of scales, from the ore deposit to the Earth’s crust and lithosphere. In order to map these systems, Geoscience Australia has undertaken a series of integrated studies to identify key regions of mineral potential using new data from the Exploring for the Future program together with legacy datasets. <p>The recently acquired long-period magnetotellurics (MT) data under the national-scale AusLAMP project mapped a lithospheric scale electrical conductivity anomaly to the east of Tennant Creek. This deep anomaly may represent a potential source region for mineral systems in the crust. In order to refine the geometry of this anomaly, high-resolution broadband and audio MT data were acquired at 131 stations in the East Tennant region and were released in Dec 2019 (http://dx.doi.org/10.26186/5df80d8615367). We have used these high-resolution MT data to produce a new 3D conductivity model to investigate crustal architecture and to link to mineral potential. The model revealed two prominent conductors in the resistive host, whose combined responses link to the deeper lithospheric-scale conductivity anomaly mapped in the broader AusLAMP model. The resistivity contrasts coincide with the major faults that have been interpreted from seismic reflection and potential field data. Most importantly, the conductive structures extend from the lower crust to near-surface, strongly suggesting that the major faults are deep penetrating structures that potentially act as pathways for transporting metalliferous fluids to the upper crust where they can form mineral deposits. Given the geological setting, these results suggest that the mineral prospectivity for iron oxide copper-gold deposits is enhanced in the vicinity of the major faults in the region. <p>This release package includes the 3D conductivity model produced using ModEM code in sGrid format and Geo-referenced depth slices in .tif format.
-
The depth to Proterozoic basement surface was constructed in order to delineate the thickness of Phanerozoic and more recent cover material. The "basement" refers to the Neoproterozoic and older rocks underlying the Canning Basin. The 3D surface was constructed using GoCad software and constrained by drill-hole data, Euler depth solutions and forward modelling using magnetic data, and interpreted depths from three seismic lines crossing the Waukalycarly Embayment. The depth to basement surface should be used as a guide. With the exception of the drill-hole data, there are uncertainties involved in estimating the depths based on the magnetic methods (Euler depth solutions and forward modelling), as well as the seismic data.
-
This study brings together a wide range of datasets to provide a comprehensive assessment of the Pandurra Formation sedimentology and geochemistry in 3D. Sedimentology and geochemistry datasets generated this study are combined with pre-existing data to generate a 3D interpretation of the Pandurra Formation and improve understanding of how the Pandurra formation as we see it to today was deposited and subsequently post-depositionally mineralised.