2013
Type of resources
Keywords
Publication year
Scale
Topics
-
This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.
-
This data contains petroleum wells for the Bass and Durroon region that have drill-hole geochemistry and geological data attached to them. The attributes have data pertaining to Organinic Geochemistry, Biostratigraphy and Reservoir-Facies on a down-well basis.
-
This Strategic Plan Sets out Geoscience Australia's vision, mission, work ethos, strategic goals, core capabilities and focus.
-
The data set provides outlines for the maximum extent of the Primary Bathymetric Units (geomorphic provinces) of Australia's Exclusive Economic Zone for regions beyond the shelf break (i.e., slope, rise, abyssal plain/deep ocean floor), including the offshore island territories but not the Australian Antarctic Territory. The slope is 4,059,760 km2 (45.02% of the EEZ), rise 97,070 km2 (1.08%), and abyssal plain/deep ocean floor 2,884,590 km2 (31.99%). These data were compiled in 2004 as part of the draft national benthic marine bioregionalisation which is designed to provide improved knowledge of Australia's seabed. The Primary Bathymetric Units represent regional-scale bathymetric features and faunal distributions. The dataset includes the names of units in the attribute table as well as the area and perimeter of each unit.
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file presents the future climate wind hazard. The file name indicates the hazard being presented, e.g. wspd_rp_1000_max.tif is the 1000 year Return Period (RP - equivalent to Average Reccurrence Interval (ARI)) and is the maximum wind speed from all directions. The local wind multipliers adjust the 3-second gust regional RP wind speed from 10 m above ground level to ground level with the consideration of topography and shielding effects. Eight cardinal directions are calculated for every raster cell and the maximum of these values is then derived and presented here.
-
This metadata encompasses the shape file found in the "basins" directory of the CD-ROM. This file is sed_basins.shp. This dataset provides outlines and names of Australian sedimentary basins and sub-basins onshore and offshore (clipped to the GEOGRAPHIC BOUNDING BOX), compiled as part of Geoscience Australia marketing activities aimed at encouraging further exploration of Australian oil and gas reserves.
-
The 2011 Hillshade image (tiff) shows the ground surface detail as a single layer over the whole of Christmas Island. It can be used as an alternative to the 2011 shiny colour drape tiles, although ground detail in some areas is better shown in the tiles. It was created from the 2011 DEM using ESRI ArcMap with an azmith of 315, an altitude of 45 and a vertical exaggeration of 5x.
-
Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. fortescue_2m is an ArcGIS layer of the backscatter grid of the Tasman Peninsula survey arae produced from the processed EM3002 backscatter data of the survey area using the CMST-GA MB Process
-
This study reports the findings of salt store and salinity hazard mapping for a 20-km wide swath of the Lindsay - Wallpolla reach of the River Murray floodplain in SE Australia. The study integrated remote sensing data, an airborne electromagnetics (AEM) survey (RESOLVE frequency domain system), and lithological and hydrogeochemical data obtained from a field mapping and drilling program. Maps of surface salinity, and surface salinity hazard identified Lindsay and Wallpolla Islands, and the lower Darling Floodplain as areas of high to extreme surface salinity hazard. In the sub-surface, salt stores were found in general to increase away from drainage lines in both the unsaturated and saturated zones. Beneath the Murray River floodplain, salt stores in both unsaturated and saturated zones are high to very high (100 to 300t/ha/m) across most of the floodplain. Sub-surface salinity hazard maps (incorporating mapped salt stores and lithologies, depth to water table and the hydraulic connectivity between the aquifers), identify Lindsay and Wallpolla Islands; the northern floodplain between Lock 8 and Lock 7; and northern bank of Frenchman's Creek as areas of greatest hazard. Overall, the new data and knowledge obtained in this study has filled important knowledge gaps particularly with respect to the distribution of key elements of the hydrostratigraphy and salinity extent across the Murray River and lower Darling floodplain. These data are being used to parameterise groundwater models for salinity risk predictions, to recalculate estimates of evapotranspiration for salt load predictions, address specific salinity management questions, and refine monitoring and management strategies.
-
This dataset represents the ascending (ersarc_region) and decending (ersdesc_region) paths of the ERS satellite.