2013
Type of resources
Keywords
Publication year
Scale
Topics
-
Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software
-
This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.
-
The shallow water equations are widely used to model flood and tsunami flows, for example to develop inundation maps for hazard and risk assessments. Finite volume numerical methods are commonly used to derive approximate solutions to these problems, because of their potential to exactly conserve mass and momentum, and correctly simulate both smoothly and rapidly varying flows. However, there remain several common scenarios which often cause numerical difficulties. The occurrence of stationary water near complex wet-dry boundaries is a standard initial condition for tsunami applications. Many numerical methods will generate spurious waves in this situation, which can propagate into the flow domain and contaminate the solution. A related situation involves the simulation of run-off caused by direct rainfall inputs, which is often desirable for flood applications as an alternative to providing discharge inputs derived from rainfall-runoff models. Conserving mass and avoiding unrealistic 'spikes' in the simulated flow velocities can be challenging, particularly when the flow depth is much shallower than the elevation range of each mesh cell, as is practically unavoidable in large scale applications. Several techniques to robustly treat these situations have been implemented in variants of the ANUGA hydrodynamic model, and the performance of these is assessed in a range of ideal and practical examples.
-
These products form part of the exhibition celebrating GA's involvement in the ACT and are produced as part of the ACT centenary.
-
The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. These areas are located across various offshore hydrocarbon provinces ranging from mature basins with ongoing oil and gas production to exploration frontiers. In support of the annual acreage release, Geoscience Australia (GA) provides a variety of technical information with an emphasis on basin evolution, stratigraphic frameworks and overviews of hydrocarbon prospectivity. In recent years, GA's petroleum geological studies have significantly high graded the prospectivity of large underexplored offshore regions such as the Ceduna Sub-basin and the Northern Perth Basin. A new program is now targeting areas that lie adjacent to producing regions with the aim to delineate the occurrence and distribution of petroleum systems elements in less explored or in unsuccessful areas and to provide a comprehensive overview of the regional geological evolution. Updates to the stratigraphic framework and new results from geochemical studies are already available and are used for prospectivity assessments. Furthermore, the Australian government continues to assist offshore exploration activities by providing free access to a wealth of geological and geophysical data.
-
In 2011, Geoscience Australia collected 484 km of deep-crustal (22 second) seismic reflection data. The survey (11GA-YO1) traverses the north-eastern edge of the Yilgarn Craton, the Officer Basin and the western end of the Musgrave Province. The purpose of the seismic survey was to delineate broad crustal architecture and define the Moho, with particular interest in the Yilgarn-Musgrave boundary. To compliment the seismic survey, a 3D geological model was constructed that incorporates interpretations derived from seismic, potential field, surface geology and borehole data. Forward and inverse modelling techniques were applied to the potential field data to extrapolate the seismic interpretations into 3D space. Borehole data was used to constrain the interpretation of upper crustal sequences where available. The model was later used to constrain 3D potential field inversions of the area. This poster presents a 3D geological model of the YOM region as well as the geological and geophysical constraints that were used to construct it. Some of the fundamental and technical limitations of the model are also discussed.
-
GA factsheet on Interferometric Synthetic Aperture Radar (InSAR)
-
Oil and Gas pipeline infrastructure.
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file presents the future climate wind hazard. The file name indicates the hazard being presented, e.g. wspd_rp_1000_max.tif is the 1000 year Return Period (RP - equivalent to Average Reccurrence Interval (ARI)) and is the maximum wind speed from all directions. The local wind multipliers adjust the 3-second gust regional RP wind speed from 10 m above ground level to ground level with the consideration of topography and shielding effects. Eight cardinal directions are calculated for every raster cell and the maximum of these values is then derived and presented here.
-
The map provides a visual representation of the sand content of seabed sediments expressed as a weight percentage. The data are represented from 0 to 100%. The data on which this map is based were compiled from Geoscience Australia's MARine Sediment database (MARS - http://www.ga.gov.au/oracle/mars/).