From 1 - 10 / 104
  • The Early Cretaceous Gage Sandstone and South Perth Shale formations are one of the most prospective reservoir-seal pairs in the Vlaming Sub-basin. Plays include post-breakup pinch-outs with the South Perth Shale forming a top seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD and was deposited in palaeotopographic lows of the Valanginian breakup unconformity. This is overlain by the thick deltaic South Perth (SP) Supersequence. To characterise the reservoir-seal pair, a detailed sequence stratigraphic analysis was conducted by integrating 2D seismic interpretation, well log analysis and new biostratigraphic data. The palaeogeographic reconstructions for the Gage reservoir are based predominantly on the seismic facies mapping, whereas SP Sequence reconstructions are derived from mapping higher-order prograding sequences and establishing changes in sea level and sediment supply. The Gage reservoir forms part of a sand-rich submarine fan system and was deposited in water depths of > 400 m. It ranges from confined canyon fill to fan deposits on a basin plain. Directions of sediment supply are complex, with major sediment contributions from a northern and southern canyon adjacent to the Badaminna Fault Zone. The characteristics of the SP Supersequence differ markedly between the northern and southern parts of the sub-basin due to variations in palaeotopography and sediment supply. Palaeogeographic reconstructions reveal a series of regressions and transgressions leading to infilling of the palaeo-depression. Seven palaeogeographic reconstructions for the SP Supersequence portray a complex early post-rift depositional history in the central Vlaming Sub-basin. The developed approach could be applicable for detailed studies of other sedimentary basins

  • High-CO2 gas fields serve as important analogues for understanding various processes related to CO2 injection and storage. The chemical signatures, both within the fluids and the solid phases, are especially useful for elucidating preferred gas migration pathways and also for assessing the relative importance of mineral precipitation and/or solution trapping efficiency. In this paper, we present a high resolution study focused on the Gorgon gas field and associated Rankin Trend gases on Australia's North West Shelf. The gas data we present here display clear trends for CO2 abundance (mole %) and %- C CO2 both areally and vertically. The strong spatial variation of CO2 content and %- C and the interrelationship between the two suggests that processes were active to alter the two in tandem. We propose that these variations were driven by the precipitation of a carbonate phase, namely siderite, which is observed as a common late stage mineral. This conclusion is based on Rayleigh distillation modeling together with bulk rock isotopic analyses of core, which indicates that the late stage carbonate cements are related to the CO2 in the natural gases. The results suggest that a certain amount of CO2 may be sequestered in mineral form over short migration distances of the plume.

  • GA contribution to CO2CRC. Report describes the work done to create a PETREL model of the Naylor Field proposed injection reservoir; eighteen appendicies.

  • A Bayesian inversion technique to determine the location and strength of trace gas emissions from a point source in open air is presented. It was tested using atmospheric measurements of nitrous oxide (N2O) and carbon dioxide (CO2) released at known rates from a source located within an array of eight evenly spaced sampling points on a 20 m radius circle. The analysis requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. The influence of varying background concentrations of ~1% for N2O and ~10% for CO2 was removed by subtracting upwind concentrations from those downwind of the source to yield only concentration enhancements. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume. The analysis localized the source to within 0.8 m of the true position and the emission rates were determined to better than 3% accuracy. This technique will be useful in assurance monitoring for geological storage of CO2 and for applications requiring knowledge of the location and rate of fugitive emissions.

  • As part of the Australian Government National CO2 Infrastructure Plan (NCIP), Geoscience Australia is undertaking CO2 storage assessment of the Vlaming Sub-basin located offshore Western Australia in the southern Perth Basin. The Vlaming Sub-basin is a Mesozoic depocentre containing up to 14 km of sediments. Close proximity of the basin to industrial polluters in the Perth area dictates the need to find CO2 storage solutions in this basin. The main reservoir unit identified as suitable for storage of CO2 is the Early Cretaceous Gage Sandstone deposited in paleo-topographic lows of the Valanginian breakup unconformity. The reservoir unit is laterally extensive (over 1,500 km2) and over most of the area reasonably thick (100 - 300 m). It lies at depths between 1400 and 2000 m below the seafloor, which is suitable for injection of the supercritical CO2 and makes it an attractive target for the long-term storage. The reservoir unit is overlain by a thick deltaic to shallow marine succession of the South Perth Shale, which represents a regional seal in the area. Carbon Storage taskforce estimated that up 1 GT of CO2 can be stored in the Gage Sandstone. The first assessment of the Vlaming Sub-basin undertaken by CO2CRC focused on evaluation of the reservoir unit and overall storage capacity. The current study is based on interpretation and integration of the seismic, well and marine datasets, both existing and acquired since the previous assessment. It includes detailed analysis of reservoir and seal properties and a comprehensive evaluation of the seal integrity risks to allow a more accurate and realistic modeling for CO2 storage.

  • This report details the suitability of two identified sites in the Browse Basin for the geological storage of carbon dioxide: the Carbine Ponded Turbidite and the Leveque Shelf long migration dissolution trap. Detailed site assessments were completed by undertaking detailed geophysical interpretation of the top and base of each site, combined with a comprehensive structural, stratigraphic and sedimentological analysis, in order to construct a series of static 3D reservoir models for each potential storage site. These were submitted for CO2 injection simulation in order to better estimate the potential storage capacity, the potential injectivity volumes, and identify any containment-related issues of each site. Therefore this reports aims to provide technical recommendations regarding the viability of the long-term geological storage of CO2 in the Browse Basin.

  • This series of cross sections and data show the suitablility of the Sydney Basin for storage of carbon dioxide.Cartography file number 07-1825-1.

  • Sampling, prior to CO2 injection at the CO2CRC Otway Project, southeastern Victoria at the end of 2007 early 2008, provided a stocktake of the molecular and isotopic (carbon and hydrogen) compositions of the subsurface hydrocarbon and non-hydrocarbon gases (and heavier hydrocarbons) at, and in close proximity to, the injection site. This baseline study is also fundamental to the assessment of present sub-surface petroleum components as natural tracers for injected gases arriving at the monitoring well. The CO2CRC Otway Project will use the CO2-rich natural gas (containing 79% CO2 and 20% methane) from the Buttress-1 well; totalling 100,000 tons of gas injected over 2 years. This gas mixture will be injected supercritically into sandstones of the CRC-1 well below the original gas-water contact at ~2000 m in the Waarre Formation. The depleted natural gas well at Naylor-1 is the monitoring well, situated 300 m updip of the injection well. Gas from the Waarre Formation in Naylor-1 observation well contains <1% CO2, which is isotopically depleted in 13C (13C -15.8) by 9 compared to CO2 (13C -6.8) in Buttress-1. Thus the carbon isotopes of CO2 can act as a primary natural tracer for monitoring purposes. Isotopically, the minimum detection limit would result from an increase of ~20 % in the CO2 concentration at Naylor-1 from the Buttress-derived CO2. On the other hand, the carbon and hydrogen isotopes of methane, wet gases and higher hydrocarbons are very similar between Buttress-1, CRC-1 and Naylor-1, requiring addition of external conservative tracers (Boreham et al., 2007) for the monitoring of hydrocarbon components. Although the content of liquid hydrocarbons in the gases is very low (<1%), there is the potential for supercritical CO2 extraction of these high molecular weight components (e.g. black oil in the Caroline-1 CO2 gas field and solid wax at the Boggy Creek CO2 production plant) that can be either advantageous (lubrication) or detrimental (clogging) to monitoring equipment at Naylor-1. The CRC-1 well provided an opportunity to collect downhole mud gases over many formations. Maximum total hydrocarbon concentration of 0.97 % occurred in the Waarre Formation Unit C. Surprisingly, a free gas zone in the overlying Flaxmans Formation had a lower maximum concentration (0.17 %). Carbon isotopes for the hydrocarbon gases from 1907 to 2249 mRT showed little downhole variation, while the 13C CO2 averaged -16, identical to CO2 at Naylor-1. Interestingly, the condensate recovered from a MDT in the Flaxmans Formation showed depletions in 13C for the C11 to C20 n-alkanes of up to 6 for n-C15 compared to n-alkanes of oils and condensates sourced from the Eumeralla Formation of the eastern Otway Basin (Boreham et al., 2004). Water washing is suspected at CRC-1 but is not expected to be a major factor affecting hydrocarbon compositions in the short term. The results of this subsurface petroleum audit have been pivotal in demonstrating the need for the addition of external tracers, especially for the hydrocarbon components, and provide an integral part of the near-surface, soil gas and atmospheric monitoring activities of the CO2CRC Otway Project. References Boreham, C.J., Hope, J.M., Jackson, P., Davenport, R., Earl, K.L., Edwards, D.S., Logan, G.A., Krassay, A.A., 2004. Gas-oil-source correlations in the Otway Basin, southern Australia. In: Boult, P.J., Johns, D.R., Lang, S.C. (Eds.), Eastern Australasian Basins Symposium II, Petroleum Exploration Society of Australia, Special Publication, pp. 603-627. Boreham, C.J., Underschultz, J., Stalker, L., Freifeld, B., Volk, H., Perkins, E., 2007. Perdeuterated methane as a novel tracer in CO2 geosequestration. In: Farrimond, P. et al. (Eds.), The 23rd International Meeting on Organic Geochemistry, Torquay, England 9th-14th September 2007, Book of Abstracts, 713-714.

  • CO2CRC Project 1 - Site Specific Studies for Geological Storage of carbon Dioxide Part 1: Southeast Queensland CO2 Storage Sites - Basin Desk-top, Geological Interpretation and Reservoir Simulation of Regional Model

  • In July 2010 Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station (' Arcturus') in central Queensland. The facility is designed as a proto-type remotely operated `baseline monitoring station' such as could be deployed in areas that are likely targets for commercial scale carbon capture and geological storage (CCS). It is envisaged that such a station could act as a high quality reference point for later in-fill, site based, atmospheric monitoring associated with geological storage of CO2. The station uses two wavelength scanned cavity ringdown instruments to measure concentrations of carbon dioxide (CO2), methane (CH4), water vapour and the isotopic signature (?13C) of CO2. Meteorological parameters such as wind speed and wind direction are also measured. In combination with CSIRO's TAPM (The Air Pollution Model), data will be used to understand the local variations in CO2 and CH4 and the contributions of natural and anthropogenic sources in the area to this variability. The site is located in a region that supports cropping, grazing, cattle feedlotting, coal mining and gas production activities, which may be associated with fluxes of CO2 and CH4. We present in this paper some of the challenges found during the installation and operation of the station in a remote, sub-tropical environment and how these were resolved. We will also present the first results from the site coupled with preliminary modelling of the relative contribution of large point source anthropogenic emissions and their contribution to the background.