seabed
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Topics
-
The northern Australian continental shelf is the focus for an expanding offshore energy industry and is also recognised for its high-value marine biodiversity in regional marine management plans. To reduce uncertainty and risk in the future development and management of the region, Geoscience Australia has an ongoing program to provide integrated marine environmental information to support both activities. The program includes collation of existing marine data and acquisition of new high resolution datasets. In 2009 and 2010, marine surveys in eastern Joseph Bonaparte Gulf were completed to characterise the seabed in representative areas, assess potential for geohazards and identify unique or sensitive benthic habitats. Data acquired included multibeam sonar bathymetry (~1900 km2), shallow (<120 m) sub-bottom profiles, sediment grabs and shallow (2-5 m) cores, towed video and epibenthic sleds. Geomorphic features mapped range from expansive soft-sediment plains, to isolated carbonate banks that rise tens of metres and incised valleys up to 200 m deep. Each feature is characterised by a distinctive biota, ranging from coral and sponge gardens on banks to diverse infaunal communities across plains. Geohazards include potential for localised slumping in valleys and escape of subsurface fluid/gas from plains and valley floors. To facilitate uptake of this information, results are integrated as generalised graphical models representing key spatial patterns of shelf ecosystems. This work has led to further work in targeted areas of the Gulf as part of a new four-year Australian Government program to inform geological and environmental assessments of offshore basins for CO2 storage.
-
Coral reefs occur in shallow water with sea surface temperatures (SST) greater than 18ºC, extending beyond the tropics where warm currents enable their establishment [Hopley et al., 2007]. The southernmost reef in the Pacific Ocean occurs at Lord Howe Island (31° 30°S), fringing 6 km of the western margin of the island, with isolated reef patches on the north, west and eastern sides. The island is a Miocene volcanic remnant on the western flank of the Lord Howe Rise (foundered continental crust) formed of basaltic cliffs rising to 875 m, flanked by Quaternary eolianites [McDougall et al., 1981]. The reefs support 50-60 species of scleractinian corals, whose rates of growth are only slightly slower than in more tropical locations [Harriott and Banks, 2002]. However, carbonate sediments on the surrounding shelf are dominated by temperate biota, such as foraminifera and algal rhodoliths [Kennedy et al., 2002]. Prominent in mid shelf is a broad ridge-like feature that rises from water depths of 30-50 m, which we considered to be a relict coral reef that formerly encircled the island [Woodroffe et al., 2005, 2006]. This paper describes results of sonar swath mapping to determine the extent of the reef, and coring and dating that establishes its age and demise.
-
Less than one year after the spectacular calving of the Mertz Glacier tongue, scientists were collecting the first ever images of the seafloor where the glacier tongue once sat.
-
Processes across the grounding zone are important in understanding the retreat behaviour of ice streams but are poorly understood because of the difficulty of accessing the region. The Antarctic Shelf preserves geomorphic features and sedimentary structures left by ice retreat which can provide insights into processes in and close to the grounding zone. Sidescan sonar records from Prydz Bay image a range of features that reflect changes in processes across the Amery Ice Shelf grounding zone during retreat after the Last Glacial Maximum. The presence of fluted and mega-scale glacial lineations indicates that the ice moved over an unfrozen, deforming bed in the zone up stream of the grounding zone. For most of the Amery Ice Shelf, the inter-flute dunes reflect strong thermohaline circulation in the ice shelf cavity. Sand and gravel recovered in cores from beneath the Amery Ice Shelf indicate significant current speeds, possibly enhanced by tidal pumping. The sea floor in the Lambert Deep on the western edge of the Amery Ice Shelf lacks inter-flute dunes and has a sea floor covered in subglacial features. Transverse steps cutting across flutes indicate the presence of subglacial cavities at the bed between patches of grounded ice as the ice approached the grounding zone. The presence of an esker indicates water flowing in a subglacial tunnel. The polygonal ridges are similar to those formed where surging glaciers have stagnated. This at least implies periods of stagnation before the ice flowing into the Lambert Deep retreated from successive grounding line positions.
-
The Lord Howe Island survey SS06-2008 in April 2008 aboard the RV Southern Surveyor was a collaboration between the University of Wollongong and Geoscience Australia. The survey was also an activity of the Commonwealth Environment Research Facilities' (CERF) Marine Biodiversity Hub, of which Geoscience Australia is a partner, and will contribute to the revised Plan of Management for the Lord Howe Marine Parks. The objectives of the survey were to map the morphology and benthic environments of the shallow shelf that surrounds Lord Howe Island as well as the deeper flanks of this largely submarine volcano. Of particular interest was the apparent drowned reef structure on the shelf and the spatial distribution of seabed habitats and infauna. The data collected are required to better understand the history of reef growth at Lord Howe Island, which sits at the southernmost limit of reef formation, and links between the physical environment and ecological processes that control the spatial distribution of biodiversity on the shelf. The morphology of the flanks of the submarine volcano was also examined to reveal whether they provide evidence of major erosional and depositional processes acting on the volcano. This report provides a description of the survey activities and the results of the processing and initial analysis of the data and samples collected.
-
Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp
-
Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp
-
The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises mineral specific surface area measurements made on seabed sediments. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government's Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government's research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises organic carbon and nitrogen concentrations and isotopes in the upper 2 cm of seabed sediments. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia - post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government's Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government's research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises Fe, Co, Cd, Cu, Zn, Ni and Mn concentrations after extraction of seabed sediments in cold, dilute HCl. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia - post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921