From 1 - 10 / 84
  • Some of the most visible consequences arising from climate change are sea level rise and more intense and frequent storms. On the open coast and low lying estuarine waterways these impacts will lead to the increased risks of inundation, storm surge and coastal erosion that can damage beaches, property and infrastructure and impact on a significant number of people. Understanding the potential risk of these coastal hazards is critical for coastal zone management and the formulation of adaptation responses, while early action is likely to be the most cost effective approach to managing the risk. Geoscience Australia (GA) is assisting the Australian Government's Department of Climate Change to develop a 'first pass' National Coastal Vulnerability Assessment. GA and the University of Tasmania (UTas) are developing fundamental spatial datasets and GIS modelling tools to identify which land areas of the Australian coast are likely to be physically sensitive to the effects of sea level rise, storms and storm surge. Of special interest is to identify sensitive areas where there is significant property and infrastructure that will be the focus of a more detailed study in a second pass assessment. A new national shoreline geomorphic and stability map or Smartline, developed for the project by UTas, is a key new spatial dataset. The Smartline is an interactive, nationally-consistent coastal GIS map in the form of a segmented line. Each line segment identifies distinct coastal landform types using multiple attribute fields to describe important aspects of the geology, geomorphology and topography of the coast. These data enable an assessment of the stability of the coast and its sensitivity to the potential impacts of shoreline erosion (soft coast) and inundation (low-lying coast), providing a useful indicative coastal risk assessment.

  • The Regional Tropical Cyclone Hazard for Infrastructure Adaptation to Climate Change project aims to provide improved estimates of tropical cyclone wind hazard in current and future climates, for use in adaptation strategies such as wind speed-based building design criteria. The overarching goal is to make practical recommendations regarding the effect of climate change on tropical cyclones. This is most effectively achieved through evaluating the effect of climate change on extreme return period wind speeds (or severe wind hazard) across tropical Australia. In this manner, the combined effects of changes in frequency, intensity and spatial distribution of tropical cyclone events are integrated into a single quantity. Return period values are used widely in building design standards, and so represent an excellent way of informing adaptation decisions. Preceding components of the project evaluated the performance of existing general circulation models to simulate aspects of the climate important for tropical cyclones. Downscaling methods were applied to these models to create climatological simulations of tropical cyclones for input into Geoscience Australia's statistical-parametric tropical cyclone model. This, in turn, provided new estimates of severe wind hazard in both current and future climates, which may be used to make recommendations for adaptation strategies on a regional basis. Achieving this goal has required a close collaboration between the University of Melbourne, CSIRO Marine and Atmospheric Research (CMAR) and Geoscience Australia. Analysis of the general circulation models and downscaling was undertaken by University of Melbourne. The downscaling was achieved using CMAR's Conformal-Cubic Atmospheric Model (CCAM). This report details the approach used by Geoscience Australia to evaluate severe wind hazard using statistical models, and analyses the effect of climate change on severe wind hazard.

  • We highlight the importance of developing and integrating fundamental information at a range of scales (regional to national to local) to develop consistency, gain ownership, and meet the needs of a range of users and decision makers. We demonstrate this with a couple of case studies where we have leveraged national databases and computational tools to work locally to gain ownership of risks and to develop adaptation options. In this sense we endorse the notion of combining top down and bottom up approaches to get the best outcome.

  • Geoscience Australia has created a DVD 'Landsat Metadata Map Ups of Indonesia' for the Indonesian Ministry of Forestry (MoF). The DVD contains Landsat metadata information sourced from USGS and GISTDA for selected years based on the catalogue searches that Geoscience Australia has done to-date. This is one of the action items from the Bali Remote Sensing workshop in February 2009.

  • Tropical cyclones present a significant hazard to countries situated in the warm tropical waters of the western Pacific. These severe storms are the most costly and the most common natural disaster to affect this region (World Bank, 2006). The hazards posed by these severe storms include the extreme winds, storm surge inundation, salt water intrusion into ground water supplies, and flooding and landslides caused by the intense rainfall. Despite the high vulnerability of the islands in this region, there have been relatively few previous studies attempting to quantify the hazard from tropical cyclones in this region (i.e. Shorten et al. 2003, Shorten et al. 2005, Terry 2007). Understanding this hazard is also vital for informing climate change adaptation options. This study aims to address the limited understanding of the extreme wind hazard in this region. The wind hazard from tropical cyclones is evaluated for the current climate and projections were made to assess how this hazard may change in the future. The analysis is performed using a combination of historical tracks and downscaled climate models with Geoscience Australia's Tropical Cyclone Risk Model. The work was funded as part of the Pacific Climate Change Science Program (PCCSP), which forms the science component of the International Climate Change Adaptation Initiative (ICCAI), an Australian government initiative designed to meet high priority climate change adaptation needs of vulnerable countries in our region. This study assesses the wind hazard for the fifteen PCCSP partner countries which include 14 islands located in the West Pacific as well as East Timor.

  • Note that this Record has now been published as Record 2014/050, GeoCat number 78802

  • Tropical cyclones pose a significant threat to islanders in the tropical western Pacific. The extreme winds from these severe storms can cause extensive damage to housing, infrastructure and food production, whilst low lying areas can be adversely affected by storm surge inundation. As part of the Pacific Climate Change Science Program (PCCSP), Geoscience Australia is assessing the wind hazard posed by tropical cyclones for 14 islands in the western Pacific and Timor Leste. The assessment will cover both the current climate as well as projections for future climate scenarios. Wind hazard maps are being generated using Geoscience Australia's open-source Tropical Cyclone Risk Model (TCRM) that applies a statistical-parametric process to estimate return period wind speeds. The climate projections are produced by applying this model to downscaled storm tracks from global climate models. Two types of downscaled tracks are used for the projections: tracks of tropical-cyclone-like vortices directly detected in dynamically downscaled climate simulations and tracks derived from GCM's using a statistical/deterministic model (Emanuel 2006). The presentation will provide an outline of the method applied.

  • The OzCoasts web-based database and information system draws together a diverse range of data and information on Australia's coasts and its estuaries. Maps, images, reports and data can be downloaded and there are tools to assist with coastal science, monitoring, management and policy. The content is arranged into seven inter-linked modules: Search Data, Conceptual Models, Coastal Indicators, Habitat Mapping, Natural Resource Management, Landform and Stability Maps and Climate Change. The Climate Change module is the newest feature of the website and was developed in partnership with the Australian Government Department of Climate Change and Energy Efficiency. The module provides information and tools to help communicate the risks of sea-level rise and other potential impacts of climate change on coastal areas. It includes an elevation data and a modelling portal for access to existing and new elevation data and derived products, including sea level inundation maps for Perth to Mandurah, Melbourne, Sydney, Hunter and Central Coast & Brisbane and Gold Coast. The inundation footprints illustrate three sea level rise scenarios: a low (0.5m), medium (0.8m) and high (1.1m) scenario for a 2100 time period, with values based on IPCC projections (B1 and A1FI scenarios) and more recent science. OzCoasts will also soon deliver the Coastal Eutrophication Risk Assessment Tool (CERAT) for the NSW Department of Environment, Climate Change and Water, and the Australian Riverscape Classification Service (AURICL) for the Tropical Rivers and Coastal Knowledge (TRaCK) consortium. CERAT will help identify and prioritise land use planning decisions to protect and preserve the health of NSW estuaries. AURICL has a northern tropical focus, and is a dynamic and flexible system for classifying catchments and their rivers based on the similarity, or dissimilarity, of a wide range of parameters.

  • In recent years RIAG has developed a statistical model to assess severe wind hazard in the non-cyclonic regions of Australia ('Region A' as defined in the Australian/NZ Standards for Wind Loading of Structures (AS/NZS 1170.2, 2002)). The model has been tested using observational data from wind stations located in South Eastern Australia. The statistical model matched the results of the Australian/NZ standard for wind loading of structures utilising a more efficient, fully computational method (Sanabria & Cechet, 2007a). We present a methodology to assess severe wind hazard in Australia for regions where there are no observations. The methodology uses simulation data produced by a high resolution regional climate model in association with empirical gust factors. It compares wind speeds produced by the climate model with observations (mean wind speeds) and develops functions which allow wind engineers to correct the simulated data in order to match the observed mean wind speed data. The approach has been validated in a number of locations where observed records are available. In addition a Monte-Carlo modelling approach is utilised to relate extreme mean wind speeds to extreme peak gust wind speeds (Sanabria & Cechet, 2007b).

  • This folder contains the work related to Climate Future Tasmania project including hazard, risk calculation, standalone tool, management and reports etc.