environmental
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release facility to simulate surface emissions of CO2 (and other greenhouse gases) from the soil into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity in total). Injection of CO2 into the soil is via a 120m long slotted HDPE pipe installed horizontally 2m underground. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. An overview of monitoring experiments conducted during the first subsurface release (January-March 2012), including application of the atmospheric tomography technique, soil flux surveys, microbiological surveys, and tracer studies, will be presented. Additional CO2 release experiments are planned for late 2012 and 2013. Poster presented at 11th Annual Conference on Carbon Capture Utilization & Sequestration, April 30 - May 3, 2012, Pittsburgh, Pennsylvania
-
Mean monthly and mean annual maximum, minimum & mean temperature grids. The grids show the temperature values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). As part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. The grid point resolution of the data is 0.025 degrees (approximately 2.5km). Approximately 600 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.
-
Models of seabed sediment mobilisation by waves and currents over Australia's continental shelf environment are used to examine whether disturbance regimes exist in the context of the intermediate disturbance hypothesis (IDH). Our study shows that it is feasible to model the frequency and magnitude of seabed disturbance in relation to the dominant energy source (wave-dominated shelf, tide-dominated shelf or tropical cyclone dominated shelf). Areas are mapped where the recurrence interval of disturbance events is comparable to the rate of ecological succession, which meets criteria defined for a disturbance regime. We focus our attention on high-energy, patch-clearing events defined as exceeding the Shields (bed shear stress) parameter value of 0.25. Using known rates of ecological succession for different substrate types (gravel, sand, mud), predictions are made of the spatial distribution of a dimensionless ecological disturbance index (ED), given as: ED = FA (ES/RI), where ES is the ecological succession rate for different substrates, RI is the recurrence interval of disturbance events and FA is the fraction of the frame of reference (surface area) disturbed. Maps for the Australian continental shelf show small patches of ED-seafloor distributed around the continent, on both the inner and outer shelf. The patterns are different for wave-dominated (patches on the outer shelf trending parallel to the coast), tide-dominated (patches crossing the middle-shelf trending normal to the coast) and cyclone-dominated (large oval-shaped patches crossing all depths). Only a small portion of the shelf (perhaps ~10%) is characterised by a disturbance regime as defined here. To our knowledge, this is the first time such an analysis has been attempted for any continental shelf on the earth.
-
There is growing awareness of the scientific and intrinsic value of Antarctic geological features, including sites containing rare, and in some cases, globally unique mineral occurrences, mineral assemblages, and unusual rocks features (e.g. ventifacts) and rare fossils. However, the global economic value of the mineral and fossil trade is also considerable and growing, with prized specimens being sold for prices per gram equivalent to that of gold. Locations of geological value, once considered 'protected' by virtue of the logistical complexity and prohibitive cost involved in collection, are becoming increasingly vulnerable as the interest of collectors grows and the inaccessibility of Antarctica diminishes with more frequent visits by private and adventure travellers. Thus the need for proactive intervention, protection and management of 'geo-heritage' sites is becoming increasingly urgent. Wider recognition of the geological values of sites achieved by invoking the provisions for area management of the Madrid Protocol will also help mitigate casual souveniring and accidental or deliberate damage caused by ill-advised construction or other human activity, such as use of heavy machinery.
-
From 1995 to 2000 information from the federal and state governments was compiled for Comprehensive Regional Assessments (CRA), which formed the basis for Regional Forest Agreements (RFA) that identified areas for conservation to meet targets agreed by the Commonwealth Government with the United Nations. These 3 CDs were created as part of GA's contribution to the Eden, NSW CRA. CD1 contains original and final versions of all data coverages and shapefiles used in the project, Published Graphics files in ArcInfo (.gra), postscript (.ps) and Web ready (.gif) formats, all Geophysical Images and Landsat data and final versions of documents provided for publishing. CD2 contains the DEFUNCT directories, data that has been modified or replaced in the final version. CD3 contains the INTEGRTN directory, integration data used for evaluating options.
-
This is a 3 minute movie (with production music), to be played in the background during the October 28th 2010 Geoscience Australia Parlimentary Breakfast. The video shows a wide range of the types of activities that GA is involved in. These images include GA people doing GA activities as well as some of the results of offshore surveys; continental mapping; eath monitoring etc. The movie will be played as a background before and after GA's CEO (Chris Pigram) presentation.
-
Explaining spatial variation and habitat complexity of benthic habitats from underwater video through the use of maps. Different methodologies currently used to process and analyse percent cover of benthic organisms from underwater video will be addressed and reviewed.
-
This introductory chapter provides an overview of the book's contents and definitions of key concepts including benthic habitat, potential habitat and seafloor geomorphology. The chapter concludes with a summary of commonly used habitat mapping technologies. Benthic (seafloor) habitats are physically distinct areas of seabed that are associated with particular species, communities or assemblages that consistently occur together. Benthic habitat maps are spatial representations of physically distinct areas of seabed that are associated with particular groups of plants and animals. Habitat maps can illustrate the nature, distribution and extent of distinct physical environments present and importantly they can predict the distribution of the associated species and communities.
-
This dataset contains species identifications of molluscs collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 3 May 2010. Species-level identifications were undertaken by Richard Willan at the Northern Territory Museum and were delivered to Geoscience Australia on the 5 May 2010 (leg 1 only). See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.
-
Analytical data for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extractable elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH from >3500 soil samples from two continents (Australia and Europe) are presented and compared to (1) the composition of the upper crust, (2) published world soil average values, and (3) data from other continental-scale soil surveys. It is demonstrated that average upper continental crust values do not provide reliable estimates for natural concentrations of elements in soils. For many elements there exist substantial differences between published world soil averages and the median concentrations observed on two continents. Direct comparison with other continental datasets is hampered by the fact that often mean, instead of the statistically more correct median, is reported. Using a database of the worldwide distribution of lithological units, it can be demonstrated that lithology is a poor predictor of soil chemistry. Climate-related processes such as glaciation and weathering are strong modifiers of the geochemical signature inherited from bedrock during pedogenesis. To overcome existing shortcomings of predicted global or world soil geochemical reference values, we propose Preliminary Empirical Global Soil reference values based on analytical results of a representative number of soil samples from two continents (PEGS2).