Queensland
Type of resources
Keywords
Publication year
Service types
Topics
-
The Cloncurry Extension Magnetotelluric (MT) Survey is located north of the township of Cloncurry, in the Eastern Succession of the Mount Isa Province. The survey expands MT coverage to the north and west of the 2016 Cloncurry MT survey. The survey was funded out of the Queensland Government’s Strategic Resources Exploration Program, which aims to support discovery of mineral deposits in the Mount Isa Region. The survey area is predominantly covered by conductive sediments of the Carpentaria Basin. The cover thickness ranges from zero metres in the extreme south west of the survey, to over 345 meters in the north. Acquisition started in August 2019 and was completed in October 2020. The acquisition was managed under an collaborative framework agreement between the Geological Survey of Queensland and Geoscience Australia until April 2020, after which the GSQ took over management of the project. Zonge Engineering and Research Organization were responsible for field acquisition. Data were collected at 2 km station spacing on a regular grid with a target bandwidth of 0.0001 – 1000 s. Instruments were left recording for a minimum of 24 hours unless disturbed by animals. The low signal strength posed a significant impediment for acquiring data to 1000 s, even with the 24 hour deployments. Almost all sites have data to 100 s, with longer period data at numerous sites.
-
Interpretation of the Thomson Orogen and its context within the Tasmanides of eastern Australia is hampered by vast areas of deep sedimentary cover which also mask potential relationships between central and eastern Australia. Within covered areas, basement drill cores offer the only direct geological information. This study presents new detrital zircon isotopic data for these drill cores and poorly understood outcropping units to provide new age and provenance information on the Thomson Orogen. Two distinct detrital zircon signatures are revealed. One is dominated by Grenvillian-aged (1300900 Ma) zircons with a significant peak at ~1180 Ma and lesser peak at ~1070 Ma. These age peaks, along with Lu-Hf isotopic compositions (median Hf(t) = +1.5), dominantly mantle-like 18O values (median = 5.53) and model ages of ~1.89 Ga, support a Musgrave Province (central Australia) source. The dominance of Grenvillian-aged material additionally points to deposition during the Petermann Orogney (570530 Ma) when the Musgrave Province was uplifted shedding abundant material to the Centralian Superbasin. Comparable age spectra suggest that parts of the Thomson Orogen were connected to the Centralian Superbasin during this period. We use the term `Syn-Petermann to describe this signature which is observed in two drill cores adjacent to the North Australian Craton and scattered units in the outcropping Thomson Orogen. The second signature marks a significant provenance shift and is remarkably consistent throughout the Thomson Orogen. Age spectra exhibit dominant peaks at 600560 Ma, lesser 1300900 Ma populations and maximum depositional ages of ~496 Ma. This pattern is termed the `Pacific Gondwana detrital zircon signature and is recognised throughout eastern Australia, Antarctica and central Australia. LuHf isotope data for Thomson Orogen rocks with this signature is highly variable with Hf(t) values between -49 and +10 and dominantly supracrustal 18O values suggesting input from different and more diverse source regions.
-
The Great Artesian Basin Research Priorities Workshop, organised by Geoscience Australia (GA), was held in Canberra on 27 and 28 April 2016. Workshop attendees represented a spectrum of stakeholders including government, policy, management, scientific and technical representatives interested in GAB-related water management. This workshop was aimed at identifying and documenting key science issues and strategies to fill hydrogeological knowledge gaps that will assist federal and state/territory governments in addressing groundwater management issues within the GAB, such as influencing the development of the next Strategic Management Plan for the GAB. This report summarises the findings out of the workshop.
-
<p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources
-
This grid dataset is an estimation of the relative surface potential for recharge within the McBride Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>References</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688
-
The middle to lower Jurassic sequence in Australia's Surat Basin has been identified as a potential reservoir system for geological CO2 storage. The sequence comprises three major formations with distinctly different mineral compositions, and generally low salinity formation water (TDS<3000 mg/L). Differing geochemical responses between the formations are expected during geological CO2 storage. However, given the prevailing use of saline reservoirs in CCS projects elsewhere, limited data are available on CO2-water-rock dynamics during CO2 storage in such low-salinity formations. Here, a combined batch experiment and numerical modelling approach is used to characterise reaction pathways and to identify geochemical tracers of CO2 migration in the low-salinity Jurassic sandstone units. Reservoir system mineralogy was characterized for 66 core samples from stratigraphic well GSQ Chinchilla 4, and six representative samples were reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures. Low formation water salinity, temperature, and mineralization yield high solubility trapping capacity (1.18 mol/L at 45°C, 100 bar), while the paucity of divalent cations in groundwater and the silicate reservoir matrix results in very low mineral trapping capacity under storage conditions. Formation water alkalinity buffers pH at elevated CO2 pressures and exerts control on mineral dissolution rates. Non-radiogenic, regional groundwater-like 87Sr/86Sr values (0.7048-0.7066) indicate carbonate and authigenic clay dissolution as the primary reaction pathways regulating solution composition, with limited dissolution of the clastic matrix during the incubations. Several geochemical tracers are mobilised in concentrations greater than found in regional groundwater, most notably cobalt, concentrations of which are significantly elevated regardless of CO2 pressure or sample mineralogy.
-
This report presents key results of groundwater barometric response function development and interpretation from the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. The NBP and MBP basalt aquifers are heterogeneous, fractured, vesicular systems. This report assesses how water levels in monitoring bores in the NBP and MBP respond to barometric pressure changes to evaluate the degree of formation confinement. The main process used to evaluate water level response to barometric pressure in this study is based on barometric efficiency (BE). The BE of a formation is calculated by dividing the change in monitoring bore water level by the causative barometric pressure change. Both parameters are expressed in the same units, so BE will typically be some fraction between zero and one. BE is not necessarily constant over time; the way BE changes following a theoretical step change in barometric pressure can be described using a barometric response function (BRF). BRFs were calculated in the time domain and plotted as BE against time lag for interpretation. The BRF shape was used to assess the degree of formation confinement. Although there is some uncertainty due to monitoring bore construction issues (including long effective screens) and potentially air or gas trapped in the saturated zone, all BRFs in the current project are interpreted to indicate unconfined conditions. This finding is supported by the identification of recharge at many monitoring bores through hydrograph analysis in other EFTF project components. We conclude that formations are likely to be unconfined at many project monitoring bores assessed in this study.
-
This data release presents regional scale groundwater contours developed for the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF), an Australian Government funded geoscience data and information acquisition program. The four-year (2016-20) program focused on better understanding the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. This data release includes separate, regional-scale groundwater contour datasets for the Nulla and McBride basalt provinces developed by Geoscience Australia in: Cook, S. B. & Ransley, T. R., 2020. Exploring for the Future—Groundwater level interpretations for the McBride and Nulla basalt provinces: Upper Burdekin region, North Queensland. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/135439. As detailed in that document, the groundwater contours were drawn by hand based on: - Groundwater levels from monitoring bores measured mostly on 17 February 2019 following extensive rainfall. - Surface topography. - Surface water features (rivers and springs). - Remote sensing data. The inferred groundwater contours were used in various Upper Burdekin Groundwater Project components to frame hydrogeological discussions. It is important to note that they were drawn following a wet period; groundwater contours are temporally variable and those presented in this data release therefore only represent part of the regional groundwater flow system.
-
<p>The outcrop extent of the McBride Basalt Province, selected from the Queensland Detailed Surface Geology vector polygon mapping, March 2017. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution
-
The geology and mineral prospectivity of the southern Thomson Orogen is poorly understood because the vast majority of its extent is buried beneath younger regolith and/or sedimentary rocks. To address this issue a collaborative program to drill 16 stratigraphic boreholes was proposed to collect samples of the basement geology that can be comprehensively analysed to improve the understanding of the geological evolution of this region. To reduce the uncertainty associated with intersecting the target stratigraphy at each of the borehole sites, estimates of the cover thickness were obtained by applying the geophysical techniques of refraction seismic, audio-magnetotellurics (AMT) and targeted magnetic inversion modelling (TMIM) prior to drilling. Refraction seismic was acquired at all 16 proposed borehole sites using a system with 48 single-component geophones and a propelled weight drop primary-wave source. At 14 of the sites clear basement refractors were observed in the data. At the two other sites, Nantilla 1 and Barrygowan 1, loss of signal due to seismic attenuation at far offsets meant that a clear basement refractor was not observed. With the exception of these two sites, three distinct refractors are generally observed in the data. Those with velocities ranging from 0.4 km/s to 1.5 km/s are interpreted as regolith, those ranging from 1.8 km/s to 2.4 km/s are interpreted as Eromanga Basin sediments, and those ranging from 3.9 km/s to 5.7 km/s are interpreted as metamorphic/igneous basement. Two-dimensional velocity models of the subsurface geology were then generated using the time-term inversion method, which allowed for the thickness of each layer to be estimated. Cover thickness estimates using refraction data vary widely from site to site, with the shallowest estimate being Overshot 1 (49 m - 55 m) and the deepest Adventure Way 1 (295 m - 317 m). These variations in cover thickness estimates from site to site are indicative of basement topography variations and are not error margins. Audio-magnetotelluric data was collected at ten sites by simultaneously deploying four porous pot electrodes, to collect the two orthogonal components of telluric data (Ex and Ey), and three magnetic induction coils, to collect the three components of magnetic data (Hx, Hy and Hz). For each dataset, a one-dimensional inversion model was produced, from which resistivity contrasts were identified and used to describe electrical conductivity discontinuities in the subsurface geology. In general, the models show a near-surface conductive layer with resistivity values ≤10 Ω·m overlying layers with continuously increasing resistivities with depth (up to 102-103 Ω·m). Those layers which were >10 Ω·m were interpreted as metamorphic/igneous basement rocks and were observed to occur at depths of ~100 m to ~300 m across the survey sites, except at Overshot 1 (38 m ±10%) and Barrygowan 1 (480 m ±10%). Targeted magnetic inversion modelling (TMIM) was applied to freely available, good quality, regional airborne magnetic survey data. Depth to magnetic source estimates were generated for 53 targets, with confidence ratings, using a dipping tabular source body to model targeted magnetic anomalies in the vicinity of the borehole sites. A combined depth estimate was generated using a distance and confidence weighted average from multiple depth estimates at all but two borehole sites. Only a single depth estimate was available at Adventure Way 1 while no depth estimates were generated at Eulo 1. These combined depth estimates provide cover thickness estimates at the sites as they are likely sourced from, or near, the top of basement. Of the ten proposed borehole sites with coincident AMT and refraction seismic data, five sites have overlapping cover thickness estimates. Cover thickness estimates from the TMIM overlap both the AMT and refraction data at four sites and at two sites where only the refraction depth estimates were available. 2 Estimating Cover Thickness in the Southern Thomson Orogen The cover thickness estimates presented in this report lower the risks associated with the proposed southern Thomson Orogen stratigraphic drilling program by reducing the uncertainty in intersecting the target stratigraphy at each of the borehole sites as well as allowing for better project and program planning. Successful completion of the stratigraphic drilling program in the southern Thomson Orogen will allow for each of these geophysical methods for estimating cover thickness to be benchmarked using actual cover thicknesses measured in the boreholes.