From 1 - 10 / 59
  • The integrated use of seismic and gravity data can help to assess the potential for underground hydrogen storage in salt caverns in the offshore Polda Basin, South Australia. Geophysical integration software was trialled to perform simultaneous modelling of seismic amplitudes and traveltime information, gravity, and gravity gradients within a 2.5D cross-section. The models were calibrated to existing gravity data, seismic and well logs improving mapping of the salt thickness and depth away from well control. Models included known salt deposits in the offshore parts of the basin and assessed the feasibility for detection of potential salt deposits in the onshore basin, where there is limited well and seismic coverage. The modelling confirms that candidate salt cavern storage sites with salt thicknesses greater than 400-500 m should be detectable on low altitude airborne gravity surveys. Identification of lower cost onshore storage sites will require careful calibration of gravity models against measured data, rather than relying on the observation of rounded anomalies associated with salt diapirism. Ranking of the most prospective storage sites could be optimized after the acquisition of more detailed gravity and gradiometry data, preferably accompanied by seismic reprocessing or new seismic data acquisition.

  • The potential for hydrogen production in the Adavale Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). This web service summarises hydrogen potential in the Adavale Basin region.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • Publicly available geological data in the Cooper Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. Geochemical analysis of gas samples from petroleum in the basin shows various concentrations of natural hydrogen. However, the generation mechanism of the observed natural hydrogen concentration is still unknown. The mineral occurrences are all found in the overlying basins and are small and of little economic significance. The Cooper Basin has some potential for base metal and uranium deposits due to somewhat suitable formation conditions, but the depth of the basin makes exploration and mining difficult and expensive. This also applies to coal, where there are no identified occurrences or resources in the Cooper Basin. However, if some were identified, the depth of the basin would probably make extraction uneconomic, with the potential exception of coal seam gas extraction. CO2 geological storage assessment in the overlying Eromanga Basin suggests that most areas over the Cooper Basin (except over the Weena Trough in the south-west) are prospective for geological storage CO2.

  • The potential for hydrogen production in the Galilee Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater and natural gas coupled with carbon capture and storage (CCS). This web service summarises hydrogen potential in the Galilee Basin region.

  • This web service displays potential port locations for hydrogen export. This data is directly referenced to ‘The Australia Hydrogen Hubs Study – Technical Study’ by ARUP for the COAG Energy Council Hydrogen Working Group, 2019’.

  • <div>The Trusted Environmental and Geological Information (TEGI) Program (2021-2023) was a multi-disciplinary program that brought together the geology, energy resources, groundwater, carbon and hydrogen storage, mineral occurrences, surface water and ecology for four Australian basin regions. This talk covers how the team leveraged their varied scientific expertise to deliver integrated scientific outcomes for the North Bowen, Galilee, Cooper and Adavale basin regions. This talk highlights the approach and importance of meaningful engagement with those that live in, work in, rely on and care for the regions. The story of the TEGI program outlines how a committed team, collaborating across Australia’s leading scientific organisations, delivered genuine impact during a time of political change.</div><div><br></div>

  • The potential for hydrogen production in the Adavale Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), natural gas resources, and geological storage potential for carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Eight aquifers from overlying basins (Galilee, Eromanga and Lake Eyre basins) are included in the assessment. The Adavale Basin region has low renewable hydrogen potential, except for some locations in the south-east and south-west. Although the renewable energy capacity factor in the basin is high, aquifers tend to have poor groundwater reserves or storativity, which results in lower overall renewable hydrogen potential. The Adavale Basin itself has no newly identified gas accumulation. However, gas reserves and contingent resources were identified in the overlying Galilee and Eromanga basins (Geoscience Australia, 2022). An assessment of CO2 geological storage also shows prospective storage areas in the Eromanga Basin within the Adavale Basin region (Bradshaw et al., 2023). Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from gas.

  • Large-scale storage of commercially produced hydrogen worldwide is presently stored in salt caverns. Through the Exploring for the Future program, Geoscience Australia is identifying and mapping salt deposits in Australia that may be suitable for hydrogen storage. The Boree Salt in the Adavale Basin of central Queensland is the only known thick salt accumulation in eastern Australia, and represent potentially strategic assets for underground hydrogen storage. The Boree Salt consists predominantly of halite and can be up to 555 m thick in some wells. Geoscience Australia contracted CSIRO to conduct analyses four Boree Salt whole cores extracted from Boree 1 and Bury 1 wells. The tests were carried out to determine the seal capacity (mercury injection capillary pressure - MICP), mineralogy (X-ray diffraction - XRD), and inorganic geochemistry of the cores. The entire core sections were scanned using X-ray CT images. In addition, four plugs were taken from the cores and tested for dry bulk density, grain density, gas porosity, and permeability. Two plugs underwent ultra-low permeability tests. The MICP test suggests that the Boree Salt is a competent seal for hydrogen storage. Mineralogy testing (XRD) revealed that the Boree Salt samples primarily comprise halite (96.5%), minor anhydrite (1.32%) and dolomite (1.65%) with traces of quartz, calcite, sylvite and cristobalite. Inorganic geochemistry results show sodium (Na; 55.4% average) is the most abundant element. Further tests, such as the creep test, in-situ seal capacity test, and leaching tests, are required to determine the suitability of the Boree Salt for underground hydrogen storage. Disclaimer: Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.

  • <div>Steelmaking value chains are economically important to Australia, but the need to decarbonize traditional steel-making processes could disrupt existing supply lines. Hydrogen-based iron and steel production offers one pathway for reducing the carbon intensity of steel. Here, we present maps assessing the costs of hydrogen-based direct reduction of iron oxides (to produce hot briquetted iron), optionally coupled with steelmaking in an electric arc furnace (i.e. the H2-DRI-EAF value chain). Developed as part of the Exploring for the Future program and in collaboration with Monash University, these models build off the functionality of the Green Steel Economic Fairways Mapper (beta release), with additional enhancements to the modelling algorithm to reflect constant furnace operation, the incorporation of costings to transport the produced hot briquetted iron or steel to domestic ports, and the optimisation of facility capacities. The capacity of facilities (including solar and wind generation, proton exchange membrane [PEM] electolysis, battery storage, and hydrogen storage tanks) are determined by the 1 Mtpa production target and the local availability of renewable energy resources, as modelled according to 2019 data sourced from the Renewables.Ninja (https://www.renewables.ninja/; Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016). The high-resolution (approximately 5.5 km pixels) maps reflect our preferred technology cost assumptions (see Wang et al., 2023) for the year 2025. Iron concentrate feedstocks are assumed to cost AU$150 per tonne, reflecting approximate costs for 65 % Fe pellets as derived from magnetite ores. Conversions to USD assume US$1.00 = AU$0.73.</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>