From 1 - 10 / 34
  • The potential for hydrogen production in the Cooper Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) of gas with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), and geological storage potential of carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Three aquifers from overlying basins (Eromanga and Lake Eyre basins) are included in the assessment. The Cooper Basin region has high renewable hydrogen potential. The presence of good aquifer throughout the basin combined with high renewable energy capacity factor resulted in significant areas with high hydrogen potential. The Cooper Basin has significant hydrocarbon resources, primarily for gas (Geoscience Australia, 2022). Although most known hydrocarbon resources have depleted since production began in the 1960s (Smith et al., 2015), a large amount of gas remains, including conventional gas (1,058 PJ reserves and 1,598 PJ resources) and unconventional basin-centred gas (2,265 PJ resources). An assessment in the overlying Eromanga Basin suggests that most areas over the Cooper Basin are prospective for potential CO2 geological storage (Bradshaw et al., 2023). Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from SMR coupled with CCS.

  • This web service depicts the locations of onshore depleted gas fields, underground gas storage facilities and known, thick underground halite deposits, all with the potential for large scale hydrogen storage.

  • The potential for hydrogen production in the Adavale Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), natural gas resources, and geological storage potential for carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Eight aquifers from overlying basins (Galilee, Eromanga and Lake Eyre basins) are included in the assessment. The Adavale Basin region has low renewable hydrogen potential, except for some locations in the south-east and south-west. Although the renewable energy capacity factor in the basin is high, aquifers tend to have poor groundwater reserves or storativity, which results in lower overall renewable hydrogen potential. The Adavale Basin itself has no newly identified gas accumulation. However, gas reserves and contingent resources were identified in the overlying Galilee and Eromanga basins (Geoscience Australia, 2022). An assessment of CO2 geological storage also shows prospective storage areas in the Eromanga Basin within the Adavale Basin region (Bradshaw et al., 2023). Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from gas.

  • Natural hydrogen is receiving increasing interest as a potential low-carbon fuel. There are various mechanisms for natural hydrogen generation but the reduction of water during oxidation of iron in minerals is recognised to be the major source of naturally generated H2. While the overall reaction is well known, the identity and nature of the key rate limiting steps is less understood. This study investigates the dominant reaction pathways through the use of kinetic modelling. The modelling results suggest there are a number of conditions required for effective H2 production from iron minerals. These include the presence of ultramafic minerals that are particularly high in Fe rather than Mg content, pH in the range of 8 to 10, solution temperatures in the 200 to 300oC range, and strongly reducing conditions. High reaction surface area is key and this could be achieved by the presence of finely deposited material and/or assemblages of high porosity or with mineral assemblages with surface sites that are accessible to water. Finally, conditions favouring the co-deposition of Ni together with FeO/Fe(OH)2-containing minerals such as brucite (and, possibly, magnetite) could enhance H2 generation

  • This web service displays potential port locations for hydrogen export. This data is directly referenced to ‘The Australia Hydrogen Hubs Study – Technical Study’ by ARUP for the COAG Energy Council Hydrogen Working Group, 2019’.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).

  • This dataset features Australian hydrogen projects that are active in the development, construction, or operating phase, and meet renewable hydrogen or carbon capture and storage (CCS) hydrogen production methods outlined in Australia's National Hydrogen Strategy. This dataset aims is to provide a detailed snapshot of hydrogen activity across Australia. It includes location data, proponent details, and descriptions for all hydrogen projects listed. Additional data is included, such as the energy source for hydrogen production, the method of hydrogen production, and the amount of hydrogen to be produced per year. This dataset is the basis of the point-location map of active Australian hydrogen projects featured on the Australia Hydrogen Opportunities Tool (AusH2.ga.gov.au). AusH2 aims to attract investment in Australia’s hydrogen industry, providing high quality, free, online geospatial analysis tools and data for mapping and understanding Australia’s hydrogen potential. It hosts key national-scale datasets, such as locations of wind and solar resources and distribution of infrastructure, as well as the Hydrogen Economic Fairways Tool (HEFT) that maps the economic viability of hydrogen production in Australia. The user can examine both hydrogen production by electrolysis using renewable energy sources and fossil fuel produced hydrogen coupled with CCS. AusH2 was produced by Geoscience Australia for the Council of Australian Governments (COAG) Energy Council’s Hydrogen Working Group in 2019. Updates to this dataset since September 2020 are coordinated with research.csiro.au/HyResource

  • All commercially produced hydrogen worldwide is presently stored in salt caverns. The only known thick salt accumulations in eastern Australia are found in the Boree Salt of the Adavale Basin in central Queensland. The Boree Salt consists predominantly of halite and is considered to be suitable for hydrogen storage. In 2021, Geoscience Australia contracted Intrepid Geophysics to perform 3D geological modelling of the Adavale Basin, particularly interested in modelling the Boree Salt deposit in the region. The developed 3D model has identified three main salt bodies of substantial thicknesses (up to 555 m) that may be suitable for salt cavern construction and hydrogen storage. These are the only known salt bodies in eastern Australia and represent potentially strategic assets for underground hydrogen storage. However, there are still unknowns with further work and data acquisition required to fully assess the suitability of these salt bodies for hydrogen storage. Geoscience Australia has transformed Intrepid Geophysics' Adavale Basin 3D Modelling dataset into Petrel. This Petrel dataset is part of Geoscience Australia's Exploring for the Future program. Files including a readme file and Petrel dataset that consists of formation surfaces, faults, borehole information and formation tops. Disclaimer: Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Bluecap is an open-source python software library developed through a collaboration between Monash University and Geoscience Australia. The software enables geospatial economic simulation of Australian resource projects. The simulator's goal is to highlight regions of high potential value in the early planning/exploration phase. Bluecap is designed to assist companies in focusing their efforts on regions more likely to generate commercially-viable projects. It was initially developed for the purpose of supporting mineral exploration, and has recently been expanded to include the capability to model hydrogen production. The simulator is a pre-scoping tool that uses coarse-level empirical models to compare project prospects across large areas. Due to its broad scale, Bluecap lacks the detailed information necessary for full feasibility studies, and as such, it should not be used as the sole basis for investment decisions. The Bluecap software underpins Geoscience Australia's Hydrogen Economic Fairways Tool (HEFT) and Economic Fairways Mapper. If you use Bluecap for a publication, please cite the following: Walsh, S.D.C., Northey, S.A., Huston, D., Yellishetty, M. and Czarnota, K. (2020) Bluecap: A Geospatial Model to Assess Regional Economic-Viability for Mineral Resource Development, Resources Policy. Geoscience Australia eCat number: 132645