Hazard
Type of resources
Keywords
Publication year
Service types
Topics
-
Severe TC Vance was one of the most intense cyclones to impact mainland Australia. The observed damage to buildings could be explained in terms of structural performance of those buildings. Combining the structural vulnerability of housing with an estimate of the maximum wind gusts, we can explore the possible impacts that a repeat of Vance would cause in Exmouth, and compare the outcomes with what occurred in 1999. The analysis of the impacts of TC Vance on present-day Exmouth shows that very few houses would be completely destroyed. Not surprisingly, older houses (pre-1980’s construction era, excluding the US Navy block houses) would dominate those destroyed, and most likely the timber-framed style houses, many of which were substantially damaged in TC Vance.
-
Data used to generate the National Seismic Hazard Assessments (NSHA). Data includes: original and modified earthquake catalogues, earthquake rate models, probabilistic seismic hazard outputs. The most recent assessment was completed in 2018 and can be viewed on Geoscience Australia's <a href="http://www.ga.gov.au/about/projects/safety/nsha">National Seismic Hazard Assessment (NSHA) Internet Page</a> <b>Value: </b> Data used to generate the NSHA <b>Scope: </b>Continental scale
-
An evaluation of the likelihood of tropical cyclone-related extreme winds, incorporating local effects on wind speed.
-
Hot emissions of mainly sulphur dioxide and carbon dioxide took place from a mound in Koranga open cut, near Wau, following a landslide at the end of May, 1967. Rocks of the Holocene volcano, Koranga, are exposed in the open cut. The emissions lasted about three months, and ceased on 13 August after another landslide removed the active mound. During the period of activity, recorded temperatures ranged up to 680°C; no anomalous seismic or tilt phenomena were recorded. The cause of the activity is not known, but it is thought that the high temperatures and gases may have been the result of the spontaneous combustion of reactive sulphides and carbonaceous material present in the altered rocks of Koranga volcano.
-
The Greater Metro Manila Area is one of the world's megacities and is home to about 12 million people. It is located in a region at risk from earthquakes, volcanic eruptions, tropical cyclones, riverine flooding, landslides and other natural hazards. Major flooding affected the Greater Metro Manila Area in September 2009 following the passage of Typhoon Ketsana (known locally as Typhoon Ondoy). Following this event, the Australian Aid Program supported Geoscience Australia to undertake a capacity building project with its partner agencies in the Government of the Philippines. The output of this project has been a series of risk information products developed by agencies in the Collective Strengthening of Community Awareness for Natural Disasters (CSCAND) group. These products quantify the expected physical damage and economic loss to buildings caused by earthquakes, tropical cyclone severe wind and riverine flooding across the Greater Metro Manila Area. Spatial data is a key input to the development of hazard models and information on exposure, or the 'elements at risk'. The development of a spatially enabled exposure database was a crucial element in the construction of risk information products for the Greater Metro Manila Area. The database provides one central repository to host consistent information about the location, size, type, age, residential population and structural characteristics of buildings within the area of interest. Unique spatial analysis techniques were employed to quantify and record important aspects of the built environment, for inclusion in the database. The process of exposure data development within the Greater Metro Manila Area, including a new application developed by Geoscience Australia for estimating the geometric characteristics of buildings from high resolution elevation data and multi-spectral imagery, will be presented.
-
<div>On January 15, 2022, an ongoing eruption at the Hunga volcano generated a large explosion which resulted in a globally observed tsunami and atmospheric pressure wave. This paper presents time series observations of the event from Australia including 503 mean sea level pressure (MSLP) sensors and 111 tide gauges. Data is provided in its original format, which varies between data providers, and a post-processed format with consistent file structure and time-zone. High-pass filtered variants of the data are also provided to facilitate study of the pressure wave and tsunami. For a minority of tide gauges the raw sea level data cannot be provided, due to licence restrictions, but high-pass filtered data is always provided. The data provides an important historical record of the Hunga volcano pressure wave and tsunami in Australia. It will be useful for research in atmospheric and ocean waves associated with large volcanic eruptions. <b>Citation:</b> Davies, G., Wilson, K., Hague, B. et al. Australian atmospheric pressure and sea level data during the 2022 Hunga-Tonga Hunga-Ha’apai volcano tsunami. <i>Sci Data</i> <b>11</b>, 114 (2024). https://doi.org/10.1038/s41597-024-02949-2
-
A mini-poster on GA's capability in tsunami hazard modelling.
-
On 6th July 2006, an intense swarm of earthquake activity began in the Sulu Range, Central New Britain, Papua New Guinea. The earthquakes were felt almost every one to two minutes, 24 hours a day, with modified Mercalli intensities of MM1 to MM4. They were accompanied by unusual vigorous activity in the hot springs southwest of the Sulu Range. Fearing a possible eruption and tsunami, about 1000 locals were evacuated.
-
Historical reports of earthquake effects from the period 1681 to 1877 in Java, Bali and Nusa Tenggara are used to independently test ground motion predictions in Indonesia’s 2010 national probabilistic seismic hazard assessment (PSHA). Assuming that strong ground motion occurrence follows a Poisson distribution, we cannot reject Indonesia’s current PSHA for key cities in Java at 95% confidence. However, the results do suggest that seismic hazard may be underestimated for the megacity Jakarta. Ground motion simulations for individual large damaging events are used to identify plausible source mechanisms, providing insights into the major sources of earthquake hazard in the region and possible maximum magnitudes for these sources. The results demonstrate that large intraslab earthquakes have been responsible for major earthquake disasters in Java, including a ~Mw 7.5 intraslab earthquake near Jakarta in 1699 and a ~Mw 7.8 event in 1867 in Central Java. The results also highlight the potential for large earthquakes to occur on the Flores Thrust. We require an earthquake with Mw 8.4 on the Flores Thrust to reproduce tsunami observation from Sulawesi and Sumbawa in 1820. Furthermore, large shallow earthquakes (Mw > 6) have occurred in regions where active faults have not been mapped identifying the need for further research to identify and characterize these faults for future seismic hazard assessments. <b>Citation:</b> Jonathan Griffin, Ngoc Nguyen, Phil Cummins, Athanasius Cipta; Historical Earthquakes of the Eastern Sunda Arc: Source Mechanisms and Intensity‐Based Testing of Indonesia’s National Seismic Hazard Assessment. <i>Bulletin of the Seismological Society of America </i>2018; 109 (1): 43–65. doi: https://doi.org/10.1785/0120180085
-
Papua New Guinea (PNG) is situated at the edge of the Pacific “ring of fire” and is exposed to frequent large earthquakes and volcanic eruptions. Earthquakes in PNG, such as 2018 Hela Province event (M7.5), continue to cause loss of life and widespread damage to buildings and infrastructure. Given its high seismic hazard, PNG would benefit from a dense seismic monitoring network for rapid (near real-time), as well as long-term, earthquake hazard and risk assessment. Geoscience Australia (GA) is working with technical agencies of PNG Government to deliver a Department of Foreign Affairs and Trade (DFAT) funded technical disaster risk reduction (DRR) program to increase community resilience on the impact of natural hazards and other secondary hazards. As part of this program, this study explores the feasibility of establishing a low-cost, community-based seismic network in PNG by first verifying the performance of the low-cost Raspberry Shake 4D seismograph, which includes a three-component strong-motion MEMs accelerometer and one (vertical) short-period geophone. A Shake device was deployed at the Rabaul Volcanological Observatory (RVO) for a period of one month (May 2018), relaying data in real-time via a 3G modem. To assess the performance of the device, it was co-located with global seismic network-quality instruments that included a three-component broadband seismometer and a strong motion accelerometer operated by GA and RVO, respectively. A key challenge for this study was the rather poor data service by local telecommunication operators as well as frequent power outages which caused repeated data gaps. Despite such issues, the Shake device successfully recorded several earthquakes with magnitudes as low as mb 4.0 at epicentral distances of 600 km, including earthquakes that were not reported by international agencies. The time-frequency domain comparisons of the recorded waveforms with those by the permanent RVO instruments reveal very good agreement in a relatively wide frequency range of 0.1-10 Hz. Based on the estimated noise model of the Shake device (seismic noise as well as instrument noise), we explore the hypothetical performance of the device against typical ground-motion amplitudes for various size earthquakes at different source-to-site distances. Presented at the 2018 Australian Earthquake Engineering Society (AEES) Conference