GNSS
Type of resources
Keywords
Publication year
Topics
-
A series of short video clips describing how data positions us for the future, consisting of the following titles: How data positions us for the future: Bush fire response A short video showing how the national positioning infrastructure managed by Geoscience Australia underpins the work of hazard management professionals. How data positions us for the future: Precision agriculture A short video showing how the national positioning infrastructure managed by Geoscience Australia underpins the work of the agricultural industry. How data positions us for the future: Urban navigation A short video showing how the national positioning infrastructure managed by Geoscience Australia underpins the everyday life of Australians. Detailed production information: Concept development: Catherine Edwardson, Bobby Cerini, Julie Silec, Michael O'Rourke, Neil Caldwell, Simon. Costello, John Dawson Production management: Bobby Cerini, Julie Silec Video production: Julie Silec, Michael O'Rourke, Neil Caldwell Videography: Bobby Cerini; Rural Fires Service NSW; stock imagery also used
-
Geoscience Australia (GA) designed two types of Global Navigation Satellite Systems (GNSS) antenna mount adaptors which allow antenna north reference marks to be easily and reliably aligned to the true north without changing the height of the antenna with respect to the reference mark. The antenna adaptors evaluated are proposed to be installed on GNSS Continuously Operating Reference Station (CORS) across Australia as new sites are built and commissioned or existing sites upgraded. The purpose of the report is to document the antenna adaptor testing experiments undertaken between 15/09/2021 and 18/10/2021, and determine if the mount adaptors have a significant impact on positioning quality when installed with GNSS antennas on typical GA CORS pillars. Specifically, the mount adaptors were evaluated for their effect on site multipath, position difference, and antenna calibration phase centre variations (PCV) models. Two types of mount adaptors were evaluated, a small adaptor with a diameter of 60 mm and a thickness of 26 mm and a large adaptor with a diameter of 100 mm and a thickness of 26 mm. Both adaptors were fabricated using solid stainless steel. After analysis of observations collected on typical GA tall (~1.5 m) and short (< ~0.2 m) pillars, with and without the adaptors installed, the following conclusions and recommendations can be made: a) The impact of the two types of antenna mount adaptors is small, causing less than 0.02 m change in average multipath based on one week data for L1 and L2 frequencies. b) There is around 1.1 mm for the tall pillar and 2.5 mm for the short pillar change in average position difference induced by the two types of adaptors for both horizontal and vertical components based on one week data. c) There is no significant impact (less than 1 mm for both L1 and L2 frequencies) on the PCV models induced by small antenna adaptor. d) The small antenna mount adaptor is recommended for tall pillar installations and the large mount adaptor is recommended for short pillar applications.
-
Data collected from Geodetic GPS observation campaigns over the last 15 years. This data set is from non-continuous GPS sites. It is a combination of surveys undertaken by Geoscience Australia, State collaborators and international collaborators.
-
AUSPOS is Geoscience Australia's on-line static GPS positioning service, providing user access to a state-of-art analysis system via a simple web-interface. Since its launch in 2001, AUSPOS has continued to be a widely used tool for the online processing of geodetic GPS data for surveying, mapping, geodetic, geophysical, hydrographical, mining, construction, military and other applications. On 20 March 2011, Geoscience Australia released an upgraded version of the service. The upgraded AUSPOS implements recent advances in analysis software and strategies, the reference frame ITRF2008, AusGeoid09 and the latest transformation parameters between ITRF2008 and GDA94. AUSPOS now delivers precise ITRF2008 coordinates to users within 3-5 minutes while continuing to provide Australian users with access to GDA94 coordinates and derived AHD heights to the highest achievable accuracy by simultaneously processing up to 7 consecutive days of user-supplied GPS data collected from up to 20 sites. The upgraded AUSPOS also provides more realistic coordinate uncertainty of its solutions using a recently developed assessment method of coordinate uncertainty. The assessment method is based on the duration of a data set and the density of reference station network.
-
Data collected from the Australian Regional Global Navigation Satellite System (GNSS) network, AuScope network and other GNSS observatories located around the world over the last 15 years.
-
<div>GNSS, one of which is the more familiar US Global Positioning System (GPS), have become part of our everyday life… in our cars, phones and even smartwatches – helping us know where we are and where we want to go. Join me to explore advances in the analysis of GNSS in an Australia context.</div><div>Knowing our ‘place in space’ is an inherent human emotive connection and Global Navigation Satellite Systems (GNSS), as a technology, has become prevalent in the world around us, and as a society we have become reliant on basic functions such as knowing where we are, and how to navigate from one place to another.</div><div>Advances in analysis of GNSS observations has led to us being able to determine a location down to the sub-millimetre; calculate precise orbital arcs of low earth satellite platforms that are exploding in numbers for innovative communication technologies and earth observation; define how wet the troposphere is, and assist weather forecasting models; and even provide real-time precise positioning at the centimetre-level for a variety of applications.</div><div><br></div><div>This presentation will take you through advances in positioning and navigation technologies through the lens of GNSS products and services based at Geoscience Australia, and how these benefit everyday Australians.</div><div><br></div>
-
<div>The annual Asia Pacific Regional Geodetic Project (APRGP) GPS campaign is an activity of the Geodetic Reference Frame Working Group (WG) of the Regional Committee of United Nations Global Geospatial Information Management for Asia and the Pacific (UN-GGIM-AP). This document describes the data analysis of the APRGP GPS campaign undertaken between the 10th and 17nd of September 2023. Campaign GPS data collected at 124 sites in nine countries across the Asia Pacific region were processed using version 5.2 of the Bernese GNSS Software in a regional network together with selected IGS (International GNSS Service) sites. The GPS solution was constrained to the ITRF2020 reference frame by adopting IGS20 coordinates on selected IGS core reference sites and using the final IGS earth orientation parameters and satellite ephemerides products. The average of the root mean square repeatability of the station coordinates for the campaign was 2.5 mm, 2.5 mm and 6.9 mm in north, east and up components of station position respectively.</div><div><br></div>
-
The gnssanalysis Python package is designed to provide the public with a source of useful python functions and classes that help with processing of GNSS observations. The functionality found within the package includes: - reading of many standard file formats commonly used in the geodetic community including SP3, SNX, RNX, CLK, PSD, etc. into pandas dataframes (Also writing certain file formats) - transformation of data, for example datetime conversions, helmert inversions, rotations, transforming geodata from XYZ to longitude-latitude-altitude, etc. - functions for the download of standard files and upload to other sources (e.g. s3)
-
This report overviews the status and development of the Asia Pacific Reference Frame (APREF) project, which is a major activity of the Geodetic Reference Framework for Sustainable Development Working Group of the United Nations Global Geospatial Information Management for Asia and the Pacific (UN-GGIM-AP), and the Reference Frame Sub-Commission 1.3e (SC1.3e) of the International Association of Geodesy (IAG). In this work, the APREF Continuously Operating Reference Station (CORS) network is reviewed. This is followed by an overview of the analysis methodology and strategy adopted for processing of data from the network. Coordinate time series, velocities as well as other parameters are generated for 450 CORS sites across the Asia-Pacific region and 200 International GNSS Service (IGS) core stations located around the world. An accuracy assessment of the output and products, including the estimated position and velocity field is presented. The position solutions have an internal accuracy of 1-4 mm and 4-8 mm in horizontal and vertical components, respectively, determined from position repeatability of the weekly solutions. When compared with the published IGS14 velocities for the 173 common sites, the velocity solutions have an external accuracy of 0.02 ± 0.29 mm/yr, 0.01 ± 0.32 mm/yr, and 0.08 ± 0.54 mm/yr for north, east and vertical components, respectively. Products of the APREF Project include the daily and weekly solutions, combined weekly solutions, position time series of long-term solutions, coordinates and velocity field of the CORS network in ITRF2014.
-
<div>The annual Asia Pacific Regional Geodetic Project (APRGP) GPS campaign is an activity of the Geodetic Reference Frame Working Group (WG) of the Regional Committee of United Nations Global Geospatial Information Management for Asia and the Pacific (UN-GGIM-AP). This document describes the data analysis of the APRGP GPS campaign undertaken between the 11th and 17nd of September 2022. Campaign GPS data collected at 116 sites in seven countries across the Asia Pacific region were processed using version 5.2 of the Bernese GNSS Software in a regional network together with selected IGS (International GNSS Service) sites. The GPS solution was constrained to the ITRF2014 reference frame by adopting IGS14 coordinates on selected IGS reference sites and using the final IGS earth orientation parameters and satellite ephemerides products. The average of the root mean square repeatability of the station coordinates for the campaign was 2.0 mm, 2.4 mm and 7.5 mm in north, east and up components of station position respectively.</div>