From 1 - 10 / 83
  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The areas shown have been nominated by petroleum industry stakeholders to be considered for the 2022 acreage release. Areas nominated for release will not receive endorsement from government until submissions resulting from a public consultation process can be considered. This publication does not indicate a commitment to a particular course of action.

  • The 2023 Offshore Greenhouse Gas Storage Acreage Release is a key strategy of the Australian Government to reduce emissions and support Australia's resource sector. The GHG acreage release will provide companies the opportunity to explore for offshore carbon dioxide injection and storage locations. The 2023 GHG acreage release consists of 10 areas across the Bonaparte, Browse, Northern Carnarvon Basins, Perth, Otway, Bass and Gippsland Basins.

  • The onshore Canning Basin in Western Australia is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Exploring for the Future (EFTF) program; an Australian Government initiative dedicated to increasing investment in resource exploration in northern Australia. The four-year program led by Geoscience Australia focusses on the acquisition of new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface in northern Australia and parts of South Australia. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well, and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Waukarlycarly 1, was drilled in 2019 in partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the South West Canning Basin. The Waukarlycarly 1 stratigraphic well was drilled in the Waukarlycarly Embayment, 67 km west of Telfer and provides stratigraphic control for the geology imaged by the Kidson seismic line (Figure 1). The well was drilled to a total drillers depth (TD) of 2680.53 mRT and penetrated a thin Cenozoic cover overlying a Permian fluvial clastic succession that includes glacial diamictite. These siliciclastics unconformably overlie an extremely thick (>1730 m) interpreted Ordovician succession before terminating in low-grade metasediments of Neoproterozoic age. Log characterisation, core analysis, geochronology, petrographic and palaeontological studies have been carried out to characterise the lithology, age and depositional environment of these sediments. As part of this comprehensive analytical program, magnetic susceptibility and bulk density analyses were undertaken by Geoscience Australia on selected rock samples.

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2020 acreage release consists of 42 areas offshore of the Northern Territory, Western Australia, Victoria and the Ashmore and Cartier Islands.

  • <div>Strontium isotopes (87Sr/86Sr) are useful to trace processes in the Earth sciences as well as in forensic, archaeological, palaeontological, and ecological sciences. As very few large-scale Sr isoscapes exist in Australia, we have identified an opportunity to determine 87Sr/86Sr ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa; last access: 15 December 2022). The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (< 2 mm) grain-size fraction was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release <em>total</em> Sr. The Sr was then separated by chromatography and the 87Sr/86Sr ratio determined by multicollector-inductively coupled plasma mass spectrometry. Results demonstrate a wide range of Sr isotopic values (0.7048 to 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a > 500 km-long northwest-southeast-trending unradiogenic anomaly (87Sr/86Sr < 0.7182). Where sedimentary carbonate or mafic/ultramafic igneous rocks dominate, low to moderate 87Sr/86Sr values are generally recorded (medians of 0.7387 and 0.7422, respectively). In proximity to the outcropping Proterozoic metamorphic basement of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, radiogenic 87Sr/86Sr values (> 0.7655) are observed. A potential correlation between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith Sr isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting Sr isoscape and future models derived therefrom can also be utilised in forensic, archaeological, paleontological and ecological studies that aim to investigate, e.g., past and modern animal (including humans) dietary habits and migrations. The new spatial Sr isotope dataset for the northern Australia region is publicly available (de Caritat et al., 2022a; https://dx.doi.org/10.26186/147473; last access: 15 December 2022).</div> <b>Citation:</b> de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern Australia, <i>Earth Syst. Sci. Data</i>, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, <b>2023</b>.

  • <div>The soil gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for gas analyses undertaken by Geoscience Australia's laboratory on soil samples taken from shallow (down to 1 m below the surface) percussion holes. Data includes the percussion hole field site location, sample depth, analytical methods and other relevant metadata, as well as the molecular and isotopic compositions of the soil gas with air included in the reported results. Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The concentrations of argon (Ar), carbon dioxide (CO₂), nitrogen (N₂) and oxygen (O₂) are given in mole percent (mol%). The concentrations of carbon monoxide (CO), helium (He), hydrogen (H₂) and methane (C₁, CH₄) are given in parts per million (ppm). Compound concentrations that are below detection limit (BDL) are reported as the value -99999. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and nitrogen (<sup>15</sup>N/<sup>14</sup>N) isotopic ratios are presented in parts per mil (‰) and in delta notation as δ<sup>13</sup>C and δ<sup>15</sup>N, respectively.</div><div><br></div><div>Determining the individual sources and migration pathways of the components of natural gases found in the near surface are useful in basin analysis with derived information being used to support exploration for energy resources (petroleum and hydrogen) and helium in Australian provinces. These data are collated from Geoscience Australia records with the results being delivered in the Soil Gas web services on the Geoscience Australia Data Discovery portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • A review of mineral exploration trends, activities and discoveries in Australia in 2022.

  • <div>A groundwater chemistry, regolith chemistry and metadata record for legacy geochemical studies over the southern Curnamona Province done by GA and partners as part of CRC LEME from 1999 to 2005, that was never fully released. This includes comprehensive groundwater chemistry from more than 250 bores in the Broken Hill region, containing physicochemical parameters, major and trace elements, and a suite of isotopes (34S, Pb, Sr, 18O, D). Recent work on this dataset (in 2021) has added hydrostratigraphic information for these groundwater samples. Also included is a regolith geochemistry dataset collected adjacent to some of the groundwater bores which tests the geochemical response of a range of different size fractions, depths and digests.</div>

  • <div>The Gas Chromatography-Mass Spectrometry (GC-MS) biomarker database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the molecular (biomarker) compositions of source rock extracts and petroleum liquids (e.g., condensate, crude oil, bitumen) sampled from boreholes and field sites. These analyses are undertaken by various laboratories in service and exploration companies, Australian government institutions and universities using either gas chromatography-mass spectrometry (GC-MS) or gas chromatography-mass spectrometry-mass spectrometry (GC-MS-MS). Data includes the borehole or field site location, sample depth, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of aliphatic hydrocarbons, aromatic hydrocarbons and heterocyclic compounds, which contain either nitrogen, oxygen or sulfur.</div><div><br></div><div>These data provide information about the molecular composition of the source rock and its generated petroleum, enabling the determination of the type of organic matter and depositional environment of the source rock and its thermal maturity. Interpretation of these data enable the determination of oil-source and oil-oil correlations, migration pathways, and any secondary alteration of the generated fluids. This information is useful for mapping total petroleum systems, and the assessment of sediment-hosted resources. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The biomarker data for crude oils and source rocks are delivered in the Petroleum and Rock Composition – Biomarker web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • <div>The bulk source rock database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the bulk properties of sedimentary rocks that contain organic matter and fluid inclusions taken from boreholes and field sites. The analyses are performed by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Sedimentary rocks that contain organic matter are typically referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and various data types including; elemental composition, and the stable isotopes of carbon, hydrogen, nitrogen, and sulfur. Results are also included from methods that separate the extractable organic matter (EOM) from rocks into bulk components, such as the quantification of saturated hydrocarbon, aromatic hydrocarbon, resin and asphaltene (SARA) fractions according to their polarity. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (<sup>2</sup>H/<sup>1</sup>H) isotopic ratios of the EOM and derivative hydrocarbon fractions, as well as fluid inclusion oils, are presented in delta notation (i.e., &delta;<sup>13</sup>C and &delta;<sup>2</sup>H) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard.</div><div><br></div><div>These data are used to determine the molecular and isotopic compositions of organic matter within rocks and associated fluid inclusions and evaluate the potential for hydrocarbon generation in a basin. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The bulk data for sedimentary rocks are delivered in the Source Rock Bulk Properties and Stable Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>