From 1 - 10 / 758
  • This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.

  • This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.

  • The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.

  • The world is turning to the minerals sector to meet sustainable development goals on the path to net zero emissions, buoyed by modern manufacturing. Discovery and development of new and varied mineral deposits is essential to reach these goals. However, despite concerted efforts, exploration success rates are in decline globally. To provide an advantage to Australia’s mineral sector, the Australian Government has significantly invested in precompetitive geoscience to unlock both geographic and conceptual frontiers for further exploration and discovery by private industry. Over the last decade, Geoscience Australia, in collaboration with state/territory geological surveys and academia, has undertaken geoscience data acquisition and analysis at an unprecedented scale aligned with UNCOVER initiative through programs like Exploring for the Future. This strategic move has reversed Australia’s declining market share of global exploration investment, stimulated new minerals industries, led to the discovery of world-class mineral deposits, and opened new undercover provinces for exploration. Here, I highlight some key successes, consider some key challenges, and suggest a future direction for precompetitive geoscience. Australia is at the forefront of mineral systems science underpinned by world-leading standardised national geological and geophysical (i.e. potential field) data coverages. Acquired at increasing resolution over decades, they have been at the vanguard of mineral exploration as they effectively map lateral geological changes yet provide limited and non-unique insights with depth. Recognising mineral deposits are the consequence of large geological systems, a critical step change in the last decade has been a focus on extensive first-pass or framework 3D imaging of the Australian continent through the systematic collection of magnetotelluric (AusLAMP), passive seismic (AusArray) and airborne electromagnetic (AusAEM) data, supplemented by higher fidelity deep reflection seismic profiles. Aided by significant advances in geophysical processing, Bayesian inference and big data analytics, when integrated with classic geoscience these datasets are revealing new first-order controls on mineralisation and identifying new exploration opportunities. Examples include discovery of lithospheric thickness controls on sediment-hosted base-metal deposits, clear scale reduction approaches to targeting iron oxide-copper-gold systems using electrical methods and mapping source rocks of hydrothermal systems. Using statistical modelling, the predictive power of each dataset or derivative can be assessed allowing an unbiased national view of Australia’s mineral potential to emerge. Importantly, these advances are coupled with recommencement of stratigraphic drilling programs to test inference and demonstrably reduce risk of exploring in frontier regions. Systematic quantitative mineral potential analysis rapidly highlights the importance of data consistency, completeness, and the robustness of validation datasets and in so doing reaffirms the critical role geological surveys play as custodians of this information. The diversification of mineral demand to include critical minerals has both leveraged this information to identify new types of mineral deposits but also highlights the youthfulness of mineral systems science. In response there are growing international efforts to grow understanding of minerals systems science for all elements to enable exploration for critical minerals and realise secondary prospectivity of mine waste. The wave of 3D imaging of Australia is developing a framework 3D digital twin and national scale mineral potential models are emerging. The challenge for precompetitive geoscience is to strategically infill this coverage to further accelerate exploration and development by industry. However, given competing land use claims and increasing environmental, social and governance (ESG) requirements on the minerals sector, success requires a common understanding of subsurface geology across minerals, energy and groundwater industries, which dovetails with surficial, social and governance datasets. Delivery of such integrated subsurface understanding is an exciting and vital challenge for geological surveys and their collaborators.

  • The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. A key focus area of the initiative is the South Nicholson region, situated across the Northern Territory and Queensland border. The South Nicholson region is located between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland–Northern Territory, which both have demonstrated hydrocarbon and base metal resources. In contrast, the South Nicholson region is not well understood geologically, is mostly undercover with limited well data, and prior to EFTF contained limited seismic coverage. Re–Os analyses in this study were undertaken to complement seismic data, U–Pb geochronology and geochemistry data to better understand the geological evolution and resource potential of the South Nicholson region. Five organic carbon bearing sedimentary samples from drillholes BMR Ranken 1, NTGS00/1, DDH 83/1 and DDH 83/4 located across the South Nicholson region were analysed for whole rock Re–Os. The aim of the analyses was to better constrain the depositional age of basin units in the region, and to potentially provide insights into the timing of post-depositional processes such as fluid events and hydrocarbon generation and/or migration. Samples belong to the Mesoproterozoic South Nicholson Group, Paleoproterozoic Fickling and McNamara groups, and the Neoproterozoic to Devonian Georgina Basin. Samples were analysed at the University of Alberta, Canada.

  • Australia’s longest onshore seismic line (18GA-KB1) across the southern Canning Basin informs resource evaluation of the frontier Kidson Sub-basin and Waukarlycarly Embayment. The Kidson Sub-basin covers 91 000 km2 and has a sag basin architecture. Preliminary interpretation of the seismic data indicates that the sedimentary basin is approximately 6 km deep, and includes a conformable package of Ordovician–Devonian siliciclastic, carbonate and evaporite facies of exploration interest. Located in the western end of the seismic line, the newly drilled deep stratigraphic well Waukarlycarly 1 penetrated 2680.53 m from the rotary table of Cenozoic and Paleozoic strata in the Waukarlycarly Embayment. This abstract reviews the Larapintine petroleum systems and discusses their possible extension into this frontier region. Recently published geochemical analyses of source rocks, oils and gases produced from exploration wells are coupled with new data on fluid inclusion gases (FIGs) from sedimentary sections in untested petroleum wells to provide correlation to hydrocarbons migrating within data-poor areas of the basin. Amplitude anomalies on the seismic line suggest the possibility of gas in the Waukarlycarly Embayment. Integration of the seismic derivative data with the results of the FIG analyses have determined the widespread generation of gas from Paleozoic sources within the Canning Basin, extending the spatial extent of the three petroleum systems described from the Lennard Shelf, Fitzroy Trough and Broome Platform. <b>Citation:</b> Carr, L.K., Edwards, D.S., Southby, C. Henson, P., Haines, P., Normore, L., Zhan, A., Brooks, D., MacFarlane, S., Boreham, C.J., Grosjean, E., Mory A.J., Wang, L. and Gunning, M-E., 2020. Kidson Sub-basin seismic survey and Waukarlycarly 1 stratigraphic well: an acquisition program for evaluating Canning Basin petroleum systems. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Analytical results and associated sample and analysis metadata from the analysis of minerals in earth material samples.

  • The ‘Australia’s Future Energy Resources’ (AFER) project is a four-year multidisciplinary investigation of the potential energy commodity resources in selected onshore sedimentary basins. The resource assessment component of the project incorporates a series of stacked sedimentary basins in the greater Pedirka-western Eromanga region in eastern central Australia. Using newly reprocessed seismic data and applying spatially enabled, exploration play-based mapping tools, a suite of energy commodity resources have been assessed for their relative prospectivity. One important aspects of this study has been the expansion of the hydrocarbon resource assessment work flow to include the evaluation of geological storage of carbon dioxide (GSC) opportunities. This form of resource assessment is likely to be applied as a template for future exploration and resource development, since the storage of greenhouse gases has become paramount in achieving the net-zero emissions target. It is anticipated that the AFER project will be able to highlight future exploration opportunities that match the requirement to place the Australian economy firmly on the path of decarbonisation.

  • Demand for critical minerals, vital for advanced technologies, is increasing. This study shows that Australia’s richly endowed geological provinces contain numerous undeveloped or abandoned mineral occurrences that could potentially lead to new economic resources. Three study areas were assessed for critical mineral occurrences through database interrogation and literature review, namely the Barkly-Isa-Georgetown (BIG), Darling-Curnamona-Delamerian (DCD) and Officer-Musgrave (OM) project areas. The study found approximately 20,000 mineral occurrences across the three areas, with just over half occurring in the DCD region. Critical minerals were recognised in ~10% of all occurrences in BIG, ~10% in DCD and 70% in OM. Gold and base metal occurrences comprise 48% (OM), 81% (DCD) and 82% (BIG) of all occurrences in the study areas, with these metals in the DCD and BIG historically and presently important. This large-scale analysis and literature review of Australia’s forgotten mineral discoveries identifies potential new sources of critical minerals and, with the addition of mineralisation style to the data, contributes to predictive exploration methodology that will further unlock the nation’s critical mineral potential. These data are available through the Exploring for the Future portal (https://portal.ga.gov.au/persona/eftf). <b>Citation:</b> Kucka C., Senior A. & Britt A., 2022. Mineral Occurences: Forgotten discoveries providing new leads for mineral supply. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146983

  • <div>Poster for the Specialist Group in Geochemistry, Mineralogy & Petrology (SGGMP) conference in Yallingup WA in November 2022.</div><div><br></div>This Poster was presented to the 2022 Specialist Group in Geochemistry, Mineralogy and Petrology (SGGMP) Conference 7-11 November (https://gsasggmp.wixsite.com/home/biennial-conference-2021)