From 1 - 10 / 16
  • As part of the Urban Digital Elevation Modelling (UDEM) Project (July 2008- June 2010), Airborne LiDAR data were acquired in partnership with State jurisdictions over priority areas including Perth-Bunbury, Adelaide, Brisbane and the Gold Coast, Melbourne, Sydney and the NSW Hunter and Central Coast. These datasets were then further processed to produce hydrologically enforced and conditioned DEMs (Hydro-DEMs).

  • The Vegetation Structure classes dataset was derived from Vegetation Height Model (VHM) and Fractional Cover Model (FCM) LiDAR products. The National Vegetation Information System framework was used to classify vegetation height and canopy/cover density into (sub-)stratum, growth forms, and structural formation classes. The classifications contain descriptions and spatial extents of the vegetation types for the East Kimberley LiDAR survey area. The displayed classifications include 19 dominant structural formation classes, and 43 dominant sub-structural formation classes for lower-, mid-, and upper stratum. High resolution LiDAR imagery, including Digital Elevation Model (DEM), Canopy Height Model (CHM), Vegetation Height Model (VHM), Vegetation Cover Model (VCM) and Fractional Cover Model (FCM) surfaces were acquired for the East Kimberley area in June 2017. All the data were released in 2019 (Geoscience Australia, 2019). For the purposes of vegetation structure mapping, the two input datasets were resampled, classified and combined to produce a vegetation structure map for the East Kimberley area. The methods are described by Lawrie et al. (2012), with the following differences: • resampling used Focal Statistic Min in ArcGIS as it more accurately represented vegetation extent • VHM was used instead of CHM as CHM did not include low vegetation (i.e ground cover). • VHM and FCM were classified into height and foliage cover classes using the Australian Vegetation Attribute Manual (NVIS Technical Working Group, 2017). Authors acknowledge the tremendous work of the Geoscience Australia Elevation team who carried out post processing, classification, production, quality assurance and delivery of all released LiDAR data products (see Geoscience Australia, 2019). In particular, the authors thank Graham Hammond, Kevin Kennedy, Jonathan Weales, Grahaem Chiles, Robert Kay, Shane Crossman, and Simon Costelloe. Geoscience Australia, 2019. Kimberley East - LiDAR data. Geoscience Australia, Canberra. C7FDA017-80B2-4F98-8147-4D3E4DF595A2 https://pid.geoscience.gov.au/dataset/ga/129985 Lawrie, K.C., Brodie, R.S., Tan, K.P., Gibson, D., Magee, J., Clarke, J.D.A., Halas, L., Gow, L., Somerville, P., Apps, H.E., Christensen, N.B., Brodie, R.C., Abraham, J., Smith, M., Page, D., Dillon, P., Vanderzalm, J., Miotlinski, K., Hostetler, S., Davis, A., Ley-Cooper, A.Y., Schoning, G., Barry, K. and Levett, K. 2012. BHMAR Project: Data Acquisition, processing, analysis and interpretation methods. Geoscience Australia Record 2012/11. 826p. NVIS Technical Working Group. 2017 Chapter 4.0 NVIS attributes listed and described in detail. In: Australian Vegetation Attribute Manual: National. Vegetation Information System, Version 7.0. Department of the Environment and Energy, Canberra. Prep by Bolton, M.P., deLacey, C. and Bossard, K.B. (Eds).

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • The ACT Elevation Acquisition 2015 is a highly accurate airborne LiDAR dataset, to be used to accurately model the impacts of climate change, disaster management, water security, environmental management, urban planning and infrastructure design. The full dataset covers the entire state of the ACT with a density of 4 pulses per square metre, and the Canberra's City Center at 8 pulses per square metre. LiDAR is classified to ICSM specification Level 3 (for ground) and delivered as LAS v1.4 in both ellipsoidal and othormetric formats. In addition, full waveform datasets have been provided for a small region within the 8 pulses per square metre area of interest. The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF. The classification scheme is as follows: Unclassified (1), Ground (2), low vegetation (0-0.3m : 3), medium vegetation (0.3-2m : 4), high vegetation (>2m : 5), buildings (6), low noise (7), water (9), bridge (17), and high noise (18). The full waveform LiDAR dataset provides up to 7 returns per pulse depending upon the complexity of the features on the ground. This dataset defines the classified Australian Height Datum (AHD) LiDAR dataset for the full ACT region minus Canberra's City Center at 4 pulses per square metre.

  • The Bendigo Region LiDAR project covers 3 area north east of Bendigo over the Avonmore Scarp. This project was captured between the 9th and 11th of December 2012 (delivery Feb 13) and the 24 to 28 May 2013 (delivery Aug 13) by Photomapping Services using airborne LiDAR. The final LAS dataset has been processed to level 2 of the ASPRS classification standard. Several derivative products have then been produced from the AHD corrected laser surface.

  • <div>The Lacepede Channel bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the MV Pacific Conquest and USV Blue Shadow - 901 during the period 19 May 2021 – 22 Sep 2021. This was a contracted survey conducted for the Australian Hydrographic Office by Fugro as part of the Hydroscheme Industry Partnership Program. The survey area encompases an area in Lacepede Channel, Western Australia. Bathymetry data was acquired using a Kongsberg EM2040 Mk II, and processed using Caris Hips & Sips processing software. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • The Australian Bathymetry and Topography (AusBathyTopo) Torres Strait dataset contains depth and elevation data compiled from all available data within the Torres Strait into a 30 m-resolution Digital Elevation Model (DEM). The Torres Strait lies at the northern end of the Great Barrier Reef (GBR), the largest coral reef ecosystem on Earth, and straddles the Arafura Sea to the west and the Coral Sea to the east. The Torres Strait area is bounded by Australia, Indonesia and Papua New Guinea. Bathymetry mapping of this extensive reef and shoal system is vital for the protection of the Torres Strait allowing for the safe navigation of shipping and improved environmental management. Over past ten years, deep-water multibeam surveys have revealed the highly complex continental slope canyons in deeper Coral Sea waters. Shallow-water multibeam surveys conducted by the US-funded Source-to-Sink program revealed the extensive Fly River delta deposits. Airborne LiDAR bathymetry acquired by the Australian Hydrographic Office cover most of the Torres Strait and GBR reefs, with coverage gaps supplemented by satellite derived bathymetry. The Geoscience Australia-developed National Intertidal DIgital Elevation Model (NIDEM) improves the source data gap along Australia’s vast intertidal zone. We acknowledge the use of the CSIRO Marine National Facility (https://ror.org/01mae9353 ) in undertaking this research.” The datasets used were collected by the Marine National Facility on 13 voyages (see Lineage for identification). All source bathymetry data were extensively edited as point clouds to remove noise, given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum. The 30 m-resolution grid is a fundamental dataset to underpin marine habitat mapping, and can be used to accurately simulate water mixing within a whole-of-GBR scale hydrodynamic model. This dataset is not to be used for navigational purposes.

  • We present a multifaceted hydrogeological investigation of the McBride and Nulla basalt provinces in the Upper Burdekin region, north Queensland. The project aims to better understand their key groundwater system processes to inform future development and water management decisions. This work, carried out as part of the Exploring for the Future Upper Burdekin Groundwater Project, has shown that basalt aquifers in each province are typically unconfined where monitored. Groundwater recharge is widespread but highly variable, largely occurring within the boundaries of the basalt provinces. Groundwater salinity based on electrical conductivity is <1000 μS/cm in the McBride Basalt Province (MBP) and up to 2000 μS/cm in the Nulla Basalt Province (NBP). Groundwater levels have been declining since 2011 (following major flooding in Queensland), showing that the study period covers a small fraction of a longer-functioning dynamic groundwater system. The basalt provinces contain distinct lava flows, and the degree of hydraulic connectivity between them is unclear. Despite similarities in their rock properties, the geometry of lava emplacement leads to different groundwater flow regimes within the two basalt provinces. Radial flow away from the central high elevations towards the edges is characteristic of the MBP, while regional flow from west to east dominates the NBP. Basalt aquifers in both provinces support a range of groundwater-dependent ecosystems, such as springs, some of which sustain flow in tributaries of the Burdekin River. Where streams intersect basalt aquifers, this also results in direct groundwater discharge. Springs and perennial tributaries, particularly emanating from the MBP, provide important inflows to the Burdekin River, especially in the dry season. This work has highlighted that management of MBP and NBP groundwater sources is crucial for maintaining a range of environmental assets in the region and for ensuring access for existing and future users. <b>Citation:</b> Ransley, T.R., Dixon-Jain, P., Cook, S.B., Lai, E.C.S., Kilgour, P., Wallace, L., Dunn, B., Hansen, J.W.L. and Herbert, G., 2020. Hydrogeology of the McBride and Nulla basalt provinces in the Upper Burdekin region, north Queensland. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.