From 1 - 10 / 720
  • The cartographic collection of the Doc Fisher Geoscience Library consists of the maps and air photos created or acquired by agency staff since the formation of BMR in 1946. This includes maps produced by agencies which have merged with these over the years, such as AUSLIG. Maps held include: Australian geological map series (1:250,000, 1:100,000 and the 1 mile series); topographic maps produced by NATMAP and its predecessors (1:250,000, 1:100,000 and 1:50,000) - latest editions only; various Australian geochemical, geophysical and other thematic maps; geoscience map series from other countries acquired on an exchange basis, including some with accompanying explanatory notes; Non-series maps acquired by donation or exchange; atlases. The Air photos are predominantly those used for mapping Australia and, to a lesser extent, Papua New Guinea and Antarctica, by BMR/AGSO from the 1940s to the 1980s. Geographical coverage of the sets is not complete, but many individual photos are unique in that they have pin points, overlays or other markings made by teams in the field. The Papua New Guinea photographs in the collection may, in many cases, be the only existing copies. Flight diagrams are also held for many (but not all) sets of air photos. Some other related materials, such as montages of aerial photographs (orthophotos), are also represented in the collection.

  • This map is part of a series which comprises 50 maps which covers the whole of Australia at a scale of 1:1 000 000 (1cm on a map represents 10km on the ground). Each standard map covers an area of 6 degrees longitude by 4 degrees latitude or about 590 kilometres east to west and about 440 kilometres from north to south. These maps depict natural and constructed features including transport infrastructure (roads, railway airports), hydrography, contours, hypsometric and bathymetric layers, localities and some administrative boundaries, making this a useful general reference map.

  • Map(s) of pH1:5 (pH of 1:5 soil:water slurry) in bulk Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • Although the positional accuracy of spatial data has long been of fundamental importance in GIS, it is still largely unknown for linear features. As early as 1987 the US National Center for Geographic Information and Analysis identified accuracy as one of the key elements of successful GIS implementation. Yet two decades later, while there is a large body of geodetic literature addressing the positional accuracy of point features, there is little research addressing the positional accuracy of linear features, and still no accepted accuracy model for linear features. This research aims to address some of these shortcomings by exploring the effect on linear feature positional accuracy of feature type, complexity, segment length, vertex proximity and 'scale'. A geographically sensible error model for linear features using point matching from a test line to a reference line of higher accuracy is developed and a case study undertaken using well-regarded and commonly used Australian topographic datasets. Half a million points are matched between test and reference lines for a range of topographic feature types at a spectrum of 'scales' and summary statistics are generated that shed light on the relationships between positional accuracy and 'scale', feature type, complexity, segment length, and vertex proximity. It is found that (a) metadata for the tested datasets significantly underestimates the positional accuracy of the data; (b) positional accuracy varies with 'scale' but not, as might be expected, in a linear fashion; (c) positional accuracy varies with feature type, but not as the rules of generalisation suggest; (d) complex features lose accuracy faster than less complex features as 'scale' is reduced; (e) the more complex a real-world feature, the worse its positional accuracy when mapped; and (f) accuracy mid-segment is poorer than accuracy end-segment.

  • Digital Geology and Lithology maps of the Strangways Range Region in the eastern Arunta Region of the Northern Territory have been produced from a scanned image of the first edition map published by the Bureau of Mineral Resources in 1984. The image was digitised using Microstation and ArcInfo software, and attributed to meet standards for Version 2004.01 of the Geoscience Australia Digital Data Dictionary for GIS Produces as closely as possible. The finished product has been provided as ArcView shape files and ArcInfo export files on CD-ROM. Extensive internal quality assurance and quality control processes have been used to verify the data.