From 1 - 10 / 589
  • Geoscience Australia Marine Survey 302: Final Survey Report. by Fugro Robertson Inc, Nov. 2006 - Jan. 2007.

  • This document is the Data Format Control Book (DFCB) for the Landsat 7 (L7) Enhanced Thematic Mapper Plus (EMT+) Level Zero-R Distribution Product (LORp). It focuses on the Hierarchical Data Format (HDF) of the Landsat 7 L0R product available from the Centre for Earth Resources Observation and Science (EROS) Landsat Archive Manager (LAM).

  • Melbourne Geelong LiDAR 2007

  • Educational factsheet summarising geothermal systems (hydrothermal and Hot Rock systems), advantages of geothermal power generation in Australia, geothermal power generation systems, and future electricity generation in Australia using geothermal energy. The mini-abstract on the factsheet is as follows: Geothermal energy is the heat contained within the Earth and it can be used to generate electricity by utilising two main types of geothermal resources. Hydrothermal resources use naturally-occurring hot water or steam circulating through permeable rock, and Hot Rock resources produce super-heated water or steam by artificially circulating fluid through the rock. Electricity generation from geothermal energy in Australia is currently limited to an 80kW net power plant at Birdsville in south west Queensland. However this is likely to change in the future as Hot Rock power plants become increasingly commercially viable.

  • Geodata TOPO250K Series 3 Topographic Data - Horizontal Control Points (A line which represents an imaginary line on the ground joining points of equal elevation in relation to the Australian Height Datum - AHD66). Series 3 contains a medium scale vector representation of the topography of Australia. The data include the following ten themes and 92 feature classes: Cartography: Annotations, CartographicLines, CartographicPoints, GraticuleAnnotations, Graticules, GridAnnotations and Grids Elevation: Contours, BenchMarks, HorizontalControlPoints and SpotElevations Framework: ProhibitedAreas, Reserves, FrameworkBoundaries, Islands, LargeAreaFeatures, Locations, Mainlands, Seas, GeodataIndexes and MapIndexes Habitation: BuildingAreas, BuildingPoints, BuiltUpAreas, CemeteryAreas, CemeteryPoints, Homesteads, PlaceNames, PopulatedPlaces and RecreationAreas Hydrography: CanalLines, Locks, RapidLines, Spillways, WatercourseLines, WaterfallPoints, Bores, CanalAreas, Flats, Lakes, PondageAreas, RapidAreas, Reservoirs, Springs, WatercourseAreas, Waterholes, WaterPoints, MarineHazardAreas, MarineHazardPoints and ForeshoreFlats Infrastructure: AerialCableways, DamWalls, Fences, MarineInfrastructureLines, MarineInfrastructurePoints, VerticalObstructions, WaterTanks, Yards, Conveyors, MineAreas, MinePoints, PetroleumWells and StorageTanks Terrain: Caves, Craters, DeformationAreas, Discontinuities, Pinnacles, SandRidges and Sands Transport: AircraftFacilityPoints, RailwayBridgePoints, RailwayCrossingLines, Railways, RailwayStopPoints, RailwayTunnelLines, RailwayTunnelPoints, BarrierPoints, FerryRouteLines, FootTracks, RoadCrossingLines, RoadCrossingPoints, Roads, RoadTunnelLines and RoadTunnelPoints Utility: Pipelines and Powerlines Vegetation: ClearedLines, CultivatedAreas, NativeVegetationAreas and Windbreaks

  • This map was produced for Department of Foreign Affairs and Trade and shows Australia's maritime boundaries in the Timor Sea.

  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • Inter-reefal (i.e. non-reefal) seabed environments have been much less studied than the coral reefs, however they comprise 95% of the total Great Barrier Reef (GBR) Marine Park area. Regional scale spatial analysis of the sediments and geomorphology in these areas allows for a systematic characterisation of the seabed, where comprehensive biological datasets are lacking. We offer an up-to-date synthesis of inter-reefal environments in the GBR, to better understand the nature and distribution of seabed habitats at a regional scale and within the current planning zone scheme, in support of Marine Park management. New quantitative information about surface sediments and geomorphic features, together comprise a new physical dataset of the GBR seabed. This regional dataset contains over 3,000 sediment samples available in Geoscience Australia's (GA) national marine samples database, MARS (www.ga.gov.au/oracle/mars), substantially improving the coverage of surface sediment data from inter-reefal areas, and; GA's current Geomorphic Features dataset (Harris et al., 2005) of the seabed morphology. This marks the first regional synthesis of the surface sedimentology and geomorphology of the GBR since the pioneering work of Belperio (1983a, 1983b) and Maxwell (1968; 1969a; 1969b; 1973). We present a new quantitative sediment dataset that shows regional trends in surface sediments; refining the existing facies model for the mixed carbonate-siliciclastic GBR margin. Our findings also reveal local scale facies characteristics, within the broader regional trends. Until now these distribution patterns haven't been identified on the GBR shelf and are considered to be an important characteristic of the region. In addition, we have revealed other sedimentary characteristics of the region; - Low gravel concentrations cover extensive parts of the shelf. Patches of high gravel concentration occur locally on parts of the inner and outer shelves, reflecting the input of gravel from reef talus aprons. These areas may also be associated with strong tidal currents. - Sand is the dominant grain size fraction, and highest concentrations occur on the middle and outer shelves. Although continuous regions of high sand concentration occur in the far north (e.g. Cape York) and south (e.g. south of Broad Sound) of the Marine Park, the overall distribution of sand is variable as changes in concentration produce local, small-dimension patches at a scale of 10's of metres. - The patchy distribution of sand may reflect a mixture of; 1) widespread supply of modern skeletal carbonate grains, such as foraminifera, molluscs and Halimeda, and/or restricted supply of relict sand; and, 2) the effects of hydrodynamic irregularities in inter-reef channels. - High mud concentrations predominantly occur along the inner shelf and slope. Mud forms local patches on the inner shelf associated with fluvial point sources, which are spatially discontinuous, producing a regionally variable terrigenous sediment wedge of coalescing mud (and sand) patches. - Surface sediments are carbonate-dominated across the shelf and broadly display a regional north-south, shelf-parallel zonation pattern. Low carbonate concentrations of <40% on the inner shelf denote high terrigenous compositions, which increase to >80% on the outer shelf. Within the regional zonation pattern, carbonate patches locally produce a variable distribution in sediment composition. - Uniformly high concentrations of bulk carbonate and carbonate mud on the outer shelf, reflect the constant supply of skeletal carbonate grains from inter-reefal environments, in areas of high reef density and the negligible influence of fluvial sediments on the outer shelf. Regional variations in seabed sediments and geomorphology across the region are also evident in the physical character of the planning zones.