From 1 - 10 / 1245
  • This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.

  • Due to extensive cover by Mesozoic and younger sedimentary basins and regolith, the geology of the southern Thomson Orogen is poorly understood. Small outcrops of the Thomson Orogen are exposed along the Eulo Ridge (south Qld) and in the southwest around Tibooburra (NSW). Proximal to these regions the average thickness of cover is estimated to be <200 m, which is within exploration and mining depths. The southern Thomson Orogen is true greenfields' country. Although the mineral potential of the region is largely unknown, the northeastern Thomson Orogen is well mineralised (e.g., Thalanga, Charters Towers), as is the similar-aged Lachlan Orogen to south (e.g., Cadia, Cobar, Tibooburra). In order to attract investment (exploration) into the southern Thomson Orogen, Geoscience Australia, the Geological Survey of Queensland and the Geological Survey of New South Wales have commenced a three-year collaborative project to collect new (and synthesise existing) pre-competitive data. The first year and half of the project will synthesise existing datasets across the state borders to create a revised solid geology map. This map will form the basis of a 3D model (map), which will utilise pre-existing government and industry seismic and drilling data. In support of the 3D map, several programmes of geophysical data acquisition, processing and interpretation will be undertaken. These include: airborne electromagnetic (AEM), broad-band magnetotelluric (MT) and gravity data, amongst others. In order to understand the nature of the cover rocks and their relationship to basement, a surface geochemical survey will also be completed to provide higher resolution infill of the existing National Geochemical Survey of Australia (NGSA) dataset. In addition, the potential mineral systems of the region will be assessed and a gap analysis conducted, with these results and the 3D and cover maps informing a planned drilling programme to be conducted in 2014-15. The drilling methods will be informed by the results of a similar drilling project in the Stavely Zone of western Victoria. Prior to drilling, a series of geophysical experiments will be conducted in the vicinity of the proposed holes to aid selection and improve prediction of expected cover depths. The actual drill holes will test the predictive capacity of the various pre-drilling geophysical experiments - a useful outcome in itself. The recovered core will be analysed with a range of geochemical, geochronological, geophysical and geological techniques. The combined results will be synthesised and integrated into a pre-competitive geoscience data package for exploration investment. Interim products and datasets will be released throughout the project, with the final results delivered to industry in 2016.

  • More than 17,000 dwellings in the Brisbane and Ipswich area were flood affected when, in January 2011, the Bremer and Brisbane Rivers exceeded major flood levels. In January 2013 the Brisbane and Ipswich area was again impacted by major flooding. During April and May 2012 Geoscience Australia conducted a postal survey of residents in the flood affected areas of Brisbane and Ipswich. Nearly 1,300 households responded. The survey covered a range of topics including preparation in the days leading up to the flood inundation, evacuation behaviour, economic impacts, subjective well-being and reconstruction and recovery in the days, weeks , and months following the flood event. The paper examines residential rebuilding following the floods and focuses on vulnerability and reconstruction. It discusses the composition of vulnerable households ( eg people with disabilities, no access to a motor vehicle, single parents with young children), household well being after the flood event ( eg physical, emotional and financial stress) and building fabric issues ( eg mould or warped timbers) during the reconstruction phase. Also examined are the steps taken to mitigate against future flood events. What lessons were there to be learned? The paper also compares two different socio-economic areas and looks at any differences in recovery between the two areas.

  • 2013 Acreage Release Areas W13-19 and W13-20 in the offshore northern Perth Basin, Western Australia, cover more than 19,000 km2 in parts of the Houtman, Abrolhos, Zeewyck and Gascoyne sub-basins. The Release Areas are located adjacent to WA-481-P, the only offshore exploration permit active in the Perth Basin, granted to joint venture partners Murphy Australia Oil Pty Ltd, Kufpec Australia Pty Ltd and Samsung Oil and Gas Australia Pty Ltd in September 2012. Geoscience Australia recently undertook a regional prospectivity study in the area as part of the Australian Government's Offshore Energy Security Program. A revised sequence stratigraphic framework, based on new biostratigraphic sampling and interpretation, and an updated tectonostratigraphic model, using multiple 1D burial history models for Permian to Cenozoic sequences, provide fresh insights into basin evolution and prospectivity. Geochemical studies of key offshore wells demonstrated that the late Permian-Lower Triassic Kockatea Shale Hovea Member oil-prone source interval is regionally extensive offshore in the Houtman and Abrolhos sub-basins. This is supported by fluid inclusion data that provides evidence for palaeo-oil columns within Permian reservoirs in wells from the Abrolhos Sub-basin. Additionally, oil shows in Houtman-1 can be linked to Jurassic source rocks suggesting that multiple petroleum systems could be effective in the Release Areas. A trap integrity analysis was undertaken to mitigate exploration risks associated with trap breach during Early Cretaceous breakup and provides a predictive approach to prospect assessment. Potential seepage sites on the seafloor over recently reactivated faults correlate with hydroacoustic flares, pockmarks and dark colored viscous fluid observed over the areas. These observations may indicate an active modern-day petroleum system in the Houtman Sub-basin. The presence of a Jurassic petroleum system combined with the extension of the Hovea Member source rock offshore, the potential presence of seeps and results from trap integrity studies provide a platform to revitalize exploration in the offshore northern Perth Basin.

  • FireDST (Fire Impact and Risk Evaluation Decision Support Tool) links various databases and models, including a fire spread model, building vulnerability assessment models, and infrastructure and demographic databases. The information is assembled into an integrated simulation framework through a geographical information system (GIS) interface. Pre-processed information, such as factors that determine the local and regional wind, and also the typical response of buildings to fire, are linked through a database, along with census-derived social and economic information. Impacts on infrastructure and people (smoke and heat) are assessed. An overview of the FireDST simulation 'proof of concept' tool is presented.

  • Presentation for the National Science Week 2013, AMOS Seminar "The 2003 Canberra fires - 10 years after: What have we learned" 1-5pm CSIRO Discovery Centre 18 August 2013

  • Invited entry for reference on 'Encycolpedia of Scientific Dating Methods' about uranium-lead dating of detrital zircon.

  • Geoscience Australia (GA) has been acquiring both broadband and long-period magnetotelluric (MT) data over the last few years along deep seismic reflection survey lines across Australia, often in collaboration with the States/Territory geological surveys and the University of Adelaide. Recently, new three-dimensional (3D) inversion code has become available from Oregon State University. This code is parallelised and has been compiled on the NCI supercomputer at the Australian National University. Much of the structure of the Earth in the regions of the seismic surveys is complex and 3D, and MT data acquired along profiles in such regions are better imaged by using 3D code rather than 1D or 2D code. Preliminary conductivity models produced from the Youanmi MT survey in Western Australia correlate well with interpreted seismic structures and contain more geological information than previous 2D models. GA has commenced a program to re-model with the new code MT data previously acquired to provide more robust information on the conductivity structure of the shallow to deep Earth in the vicinity of the seismic transects.

  • In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.

  • Promotional flyer detailing laboratory capabilities at GA.