2017
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Topics
-
Exploring for the Future (EFTF) is a four-year geoscience data and information collection programme that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. This factsheet explains one of the activities being undertaken to collect this data and information.
-
The Minister for Resources and Northern Australia, Senator the Hon Matthew Canavan, formally released the 2016 offshore areas for petroleum exploration on insert date here. The 28 areas are located on the North West Shelf in the Bonaparte, Browse, Roebuck, offshore Canning and Northern Carnarvon basins (Figure 1). Competitive work-program bidding for exploration permits will apply, except for three selected areas which are released under the cash-bidding scheme. These are located in the inboard part of the Northern Carnarvon Basin, where existing hydrocarbon discoveries are currently in production and where complete coverage of 3D-seismic data exists.
-
Geoscience Australia Flight Line Diagrams Catalogue Archive
-
Exploring for the Future (EFTF) is a four-year geoscience data and information collection programme that aims to better understand on a regional scale the potential mineral, energy and groundwater resources that are concealed under cover in northern Australia and parts of South Australia. This factsheet explains one of the activities being undertaken to collect this data and information.
-
Exploring for the Future (EFTF) is a four-year geoscience data and information collection programme that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. This factsheet explains one of the activities being undertaken to collect this data and information.
-
The ACT Elevation Acquisition 2015 is a highly accurate airborne LiDAR dataset, to be used to accurately model the impacts of climate change, disaster management, water security, environmental management, urban planning and infrastructure design. The full dataset covers the entire state of the ACT with a density of 4 pulses per square metre, and the Canberra's City Center at 8 pulses per square metre. LiDAR is classified to ICSM specification Level 3 (for ground) and delivered as LAS v1.4 in both ellipsoidal and othormetric formats. In addition, full waveform datasets have been provided for a small region within the 8 pulses per square metre area of interest. The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF. The classification scheme is as follows: Unclassified (1), Ground (2), low vegetation (0-0.3m : 3), medium vegetation (0.3-2m : 4), high vegetation (>2m : 5), buildings (6), low noise (7), water (9), bridge (17), and high noise (18). The full waveform LiDAR dataset provides up to 7 returns per pulse depending upon the complexity of the features on the ground. This dataset defines the classified Australian Height Datum (AHD) LiDAR dataset for the full ACT region minus Canberra's City Center at 4 pulses per square metre.
-
A postcard providing an overview of the marine ecology programme at Geoscience Australia
-
Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Mt Isa 2006, Area A (P200640), complete Bouguer grid is a complete Bouguer anomaly grid for the Mt Isa 2006, Area A (P200640). This gravity survey was acquired under the project No. 200640 for the geological survey of QLD. The grid has a cell size of 0.00372 degrees (approximately 400m). The data are given in units of um/s^2, also known as 'gravity units', or gu. A total of 6575 gravity stations were acquired to produce this grid.
-
Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Mt Isa 2006, Area A (P200640), Bouguer 1VD grid is a first vertical derivative of the Bouguer anomaly grid for the Mt Isa 2006, Area A (P200640) survey. This gravity survey was acquired under the project No. 200640 for the geological survey of QLD. The grid has a cell size of 0.00372 degrees (approximately 400m). A total of 6575 gravity stations were acquired to produce the original grid. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.
-
Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Mt Isa 2006, Area A (P200640), simple Bouguer grid is a complete Bouguer anomaly grid for the Mt Isa 2006, Area A (P200640). This gravity survey was acquired under the project No. 200640 for the geological survey of QLD. The grid has a cell size of 0.00372 degrees (approximately 400m). The data are given in units of um/s^2, also known as 'gravity units', or gu. A total of 6575 gravity stations were acquired to produce this grid.