From 1 - 10 / 39
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • The combination of anthropogenic activity and climate variability has resulted in changes to hydrologic regimes across the globe. Changes in water availability impact on vegetation structure and function, particularly in semi-arid landscapes. Riparian and floodplain vegetation communities are sensitive to changes to surface-water and groundwater availability in these water-limited landscapes. Remote-sensing multi-temporal methods can be used to detect changes in vegetation at a regional to local scale. In this study, a `best-available pixel' approach was used to represent dry-season, woody-vegetation-canopy characteristics inferred from Normalised Difference Vegetation Index (NDVI). This paper describes a method in which Landsat 5 TM and Landsat 7 ETM+ data from 1987 to 2011 were processed using object-based image-analysis techniques to generate annual minimum NDVI values for vegetation communities in the Lower-Darling floodplain The changes detected in riparian and floodplain canopies over time can then be integrated with other spatial data to identify water-source dependence and infer a relationship between changes to the hydrologic characteristics of specific water sources and vegetation dynamics.

  • The purpose of this paper is to investigate and quantify the accuracy with which hydrological signals in the Murray-Darling Basin, southeast Australia can be estimated from GRACE. We assessed the extent to which the Earth's major geophysical processes contaminate the gravitational signals in the Basin. Eighteen of the world's largest geophysical processes which generate major gravitational signals (e.g. melting of the Greenland icesheet, hydrology in the Amazon Basin) were simulated and the proportion of the simulated signal detected in the Murray - Darling Basin was calculated. The sum of the cumulative effects revealed a maximum of ~4 mm (equivalent water height) of spurious signal was detected within the Murray - Darling Basin; a magnitude smaller than the uncertainty of the basin-scale estimates of changes in total water storage. Thus, GRACE products can be used to monitor broad scale hydrologic trends and variability in the Murray-Darling Basin without the need to account for contamination of the estimates from external geophysical sources.

  • Shows the boundaries of the Australian basins as defined by the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). This data shows boundary and attribute information for 12 divisions, 77 regions and 245 basins. It also contains, for each basin, information relating to its individual basin/region/division name and number. State borders are also included in the data. Data for Division XIII Distant Islands Division is not included. These basins are the primary building block for the collection of national hydrologic data and the assessment of water resources. Data are suitable for GIS applications. Free online download. Available in ArcView Shapefile and MapInfo mid/mif. Product Specifications Coverage: Australia Currency: June 1997 Coordinates: Geographical Datum: AGD66 Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online and CD-ROM (fee applies)

  • Four data formats are available for download, three vector (e00, mif, shp) and one raster (ecw).

  • This dataset was created for the National Geochemical Survey of Australia (NGSA) to help determine the location of target sites for sampling catchment outlet sediments in the lower reach of defined river catchments. Each polygon represents a surface drainage catchment derived from a national scale 9 second (approximately 250 m) resolution digital elevation model. Catchments were extracted from an unpublished, interim version of a nested catchment framework with an optimal catchment area of 5000 km2. Only catchments from the Australian mainland and Tasmania were included. In order to generate catchments approaching the optimal area, catchments with an area of less than 1000 km2 were excluded from the dataset, while other small catchments were amalgamated, and catchments much larger than 5000 km2 were split.

  • Elevation data is a point, line or surface geographically located in the x and y relative to a horizontal datum, that includes a height (z) above or below a known vertical datum. Bathymetry will deal with all offshore elevation data. - Elevation data will include both raw elevation data and digital elevation models (DEM); - Spot Heights, points on the earth's surface, of known elevation. - Contours, lines which represents an imaginary line on the ground joining points of equal elevation. - Horizontal Control Points, points on the ground, the horizontal position of which has been determined by geodetic survey. - Digital Elevation Models (DEM) are interpolated representations of a surface. Elevation points are spaced at a regular interval so as to create a grid or lattice. These grids can be directly observed or, more generally, they are computed from more than one of the above mentioned irregular spaced elevations. - Digital Terrain Models (DTM) are bare earth DEM's representing the terrain They are interpolated using a combination of elevation information and could also be constrained using break lines, such are cliffs, drainage, coast etc. - Digital Surface Models (DSM) are also DEM's, but they include non-surface objects like trees, buildings etc. So, a DSM = DTM + all non surface objects. - Triangulated Irregular Network (TIN). A vector data structure that partitions geographic space into contiguous, nonoverlapping triangles. The vertices of each triangle are sample data points with x, y, and z values. These sample points are connected by lines to form Delaunay triangles. TINs are used to store and display elevation models. - Hydrologically enforced Digital Elevation Models (HDEM) represents DEM with drainage enforcement. The quality of a DEM is a measure of how accurate elevation is at each pixel (absolute accuracy) and how accurately the morphology is represented (relative accuracy). Several factors affect the quality of DEM-derived products: terrain roughness, sampling density (elevation data collection method), grid resolution or pixel size, interpolation algorithm, vertical resolution and terrain analysis algorithm.

  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The National Basins and Catchments are a national topographic representation of drainage areas across the landscape. Each basin is made up of a number of catchments depending on the features of the landscape. This service shows the relationship between catchments and basins. The service contains layer scale dependencies.

  • <p>The GEODATA 9 Second Digital Elevation Model (DEM-9S) Version 3 is a grid of ground level elevation points covering the whole of Australia with a grid spacing of 9 seconds in longitude and latitude (approximately 250 metres) in the GDA94 coordinate system. <p>Version 3 of the DEM-9S was calculated by Version 5.2.2 of the ANUDEM procedure (Hutchinson 2007) from comprehensively revised and augmented national GEODATA-250K topographic source data (AUSLIG 1992, Geoscience Australia 2003, Geoscience Australia 2006) using Version 5.2.2 of the ANUDEM elevation gridding procedure. The source data included revised versions of GEODATA-250K elevation points, streamlines, cliff lines and waterbodies, trigonometric points from the National Geodetic Database and additional elevation and sink point data digitised by the Fenner School from 1:100K source material. Version 5.2.2 of the ANUDEM procedure incorporates major upgrades to the modelling of streamlines, lakes, cliff lines and the coastline. <p>GEODATA 9 Second Flow Direction Grid (D8-9S) has been released for the first time with Version 3. The D8-9S is a corresponding grid describing the principal directions of surface drainage across the whole of Australia. This grid was calculated by the ANUDEM procedure as it derived the DEM-9S. It incorporates the data streamline structure and describes the drainage structure continent-wide. It can be used to delineate streamlines and associated catchment boundaries for the DEM-9S. This is particularly useful in low relief areas where drainage structure is not reliably defined by the DEM-9S elevations alone. <p>The product can be used for applications requiring accurate representation of absolute elevation values. The elevation of source data high points (hills or mountains) is well represented in Version 3. The 1:250,000 source scale of the elevation grid makes the product useful for national, State-wide and regional applications. <p>For more detailed information please refer to the User Guide below. <p>Product Information <p>Coverage: Australia, excluding external territories <p>Currency: 2008 <p>Coordinates: Geographical <p>Datum: Horizontal: GDA94; Vertical: AHD71 <p>Available Formats: GeoTIFF

  • The 9 second DEM derived streams are a a fully connected and directed stream network produced in rastor and vector fomats by Australian National University. This product is the raster format, for the the vector product please refer to the Bureau of Meterology's Geofabric Website (http://www.bom.gov.au/water/geofabric/index.shtml). It is built upon the representation of surface drainage patterns provided by the GEODATA national 9 second Digital Elevation Model (DEM) Version 3 (ANU Fenner School of Environment and Society and Geoscience Australia, 2008).