From 1 - 10 / 63
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Understanding surface water resources is important for communities, agriculture and the environment, especially in water-limited environments. In 2014 Geoscience Australia released the Water Observations from Space (WOfS) product, providing information on the presence of surface water across the Australian continent from 27 years of Landsat satellite imagery. WOfS was created to provide insight into the extent of flooding anywhere in Australia, but broader applications are emerging in the areas of wetland behaviour, river system mapping, groundwater surface water interaction, and water body perenniality. Understanding the characteristics of inundation for every waterbody across a county, over a period of time, gives a greater knowledge of perenniality and helps support decision making for a wide range of users including aquatic ecological community and water resource management. WOfS provides a consistent tool to locate and characterise water bodies at the continental scale.

  • The Surface Hydrology Lines (National) dataset presents the spatial locations of surface hydrology line features and its attributes. The dataset represents the Australia's surface hydrology at a national scale. It includes natural and man-made geographic features such as: watercourses, canals, pipelines, etc. This product presents line hydrology features with full topological connectivity and flow paths for the entire continental of Australia.

  • The Surface Hydrology Lines (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic line elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia. It is intended for defining hydrological features with attributes.

  • Completion of a pilot study over the Namoi and Murrumbidgee catchments was part of the 2012-13 project schedule between Bureau of Meteorology (Bureau) and Geoscience Australia. The purpose of the pilot was to consolidate four years of research and development of the 1 second SRTM DEM, ANUDEM Streams, and National Catchment Boundaries to enable GA operational capacity to recreate the foundation datasets for Geofabric Phase 3 deliverables. This report is aimed to highlight how successfully the process has worked, issues that have arisen and identify and develop future modifications of the methodology to enable the production of Phase 3 Geofabric products. This professional opinion has been created for the Bureau and the Geofabric Steering Committees for review of Phase 3 of the Geofabric.

  • The Surface Hydrology Points (National) dataset presents the spatial locations of surface hydrology point features and its attributes. The dataset represents the Australia's surface hydrology at a national scale. It includes natural and man-made geographic features such as: lake, soak, pool, spring, waterfall, bore, etc. This product presents small hydrology features over the entire continental of Australia.

  • Subtitle: Behind the Scenes of Geofabric Version 3 Pilot & the Future of Geospatial Surface Water Information The Bureau of Meteorology's Australian Hydrological Geospatial Fabric (Geofabric) was established in 2008 as the spatial information database to support water accounting and resource assessment mandated under the Water Act 2007. Foundation layers for Geofabric versions 1 and 2 were developed from 1:250K streamline data and the 9 second resolution national DEM. The uses of the Geofabric data have expanded to new disciplines and have resulted in increased demand for finer national resolution. Version 3 of the Geofabric is now under development in a collaborative project between Geoscience Australia, CSIRO, Australian National University (ANU) and the Bureau of Meteorology. The foundation inputs for Geofabric version 3 are based on the integrated national surface hydrology dataset which uses the best available scale data from the jurisdictions and the 1 second resolution SRTM DEM. This significant enhancement presents both challenges and opportunities. This presentation at the Surveying & Spatial Sciences Institute (SSSI) ACT Region conference on 16 August 2013 aims to show the work being undertaken in the pilot areas of the Namoi and Murrumbidgee River Regions.

  • Summary XML files complying with the Australian Flood Study Data Model including one file for each Jurisdiction and on All-in-one file.

  • Geoscience Australia's entry to the ASC2014 SPECTRUM science-art exhibition Title: Seeing Water Through Time Author: Norman Mueller Type: Science Communication image Description: The WOfS, Water Observations from Space, image is a colour-scale of how many times water was detected from the Landsat 5 and 7 satellites over central Australia from 1998 to 2012. The colours range from very low number of times (red) to very high number of times (blue), using a standard rainbow colour scheme (red-orange-yellow-green-blue). This means that red areas are hardly ever wet while blue areas are more permanent water features like lakes. The area covered includes Lake Eyre (at left) Cooper Creek (right of centre) to the Paroo River (bottom right).

  • The Surface Hydrology polygon (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic polygon elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia. It is intended for defining hydrological features wtih attributes.