From 1 - 10 / 201
  • From 1995 to 2000 information from the federal and state governments was compiled for Comprehensive Regional Assessments (CRA), which formed the basis for Regional Forest Agreements (RFA) that identified areas for conservation to meet targets agreed by the Commonwealth Government with the United Nations. These 5 CDs were created as part of GA's contribution to the SE Queensland CRA. CD1 contains ArcView Legends and Projects, data coverages, shapefiles, all documents and reports and associated maps and figures. CD2 contains various edited versions of covers and shapefiles, original data supplied by custodians, and staff workareas. CD3 contains Landsat, Magnetics etc. images. CD4 contains DEM etc. CD5 contains integration data, miscellaneous ArcInfo grids, and ArcInfo graphic files.

  • Geoscience Australia, the Western Australian Department of Planning and the Western Australian Planning Commission have collaborated through this study to develop a regional-scale inundation model capable of simulating combined storm tide and riverine flood scenarios within current and future climate conditions (sea-level rise influences only). Modelling scenarios were applied to the Busselton region of Western Australia.

  • This report describes a detailed assessment of coastal vulnerability and infrastructure exposure undertaken for Mandurah local government area (LGA) to complement the analyses in the National Coastal Risk Assessment. The assessment modelled both storm surge and coastal recession. The hydrodynamic storm surge modelling conditions were based on those observed during TC Alby (1978) and included scenarios with the storm track shifted to create maximum impact of the wind field on Mandurah, and sea-level rise scenarios from 0.0 m (current climate) to 1.1 m. Potential shifts in the shoreline position were modelled based on changes in the sediment transport regime under sea-level rise. The resulting inundation from the modelled surge and erosion event was projected onto the coastline to give impact 'footprints' for each event. These footprints were overlaid with built asset data from Geoscience Australia's National Exposure Information System (NEXIS), as well as road, railway and bridge infrastructure. The storm modelling exposure analysis found that if the 1978 Tropical Cyclone Alby storm were to directly impact Mandurah LGA today then approximately 560 buildings are exposed to storm-tide inundation. This exposure increases to nearly 3,000 buildings when factoring in a rise in sea level of 1.1m by 2100. Within the area modelled to be potentially subject to erosion due to sea-level rise by 2030 there are between 140 and 800 buildings. However, by 2100 the range increases to between 2,300 and 4,100 buildings. This study has provided fundamental coastal process predictions that can better enable adaptation plans; and a benchmark of coastal vulnerability to inundation and erosion for the City of Mandurah against which the success of future adaptation initiatives can be measured. With refinements, the modelling methodology presented here is capable of being utilised across Australia to further quantify our coastal vulnerability.

  • In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This dataset contains identifications of Polychaetes collected from 64 Smith-McIntyre grabs deployed during GA0340/SOL5754.

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia has undertaken integrated assessments of selected offshore sedimentary basins for their CO2 storage potential. In March and April 2012, Geoscience Australia completed a seabed survey (GA0334) over two targeted areas (Area 1 and Area 2) of the Vlaming Sub-basin (Figure 1 1), as part of a larger study investigating the suitability of the Vlaming Sub-basin for geological storage of CO2. This document summarises the results and interpretation of seabed and shallow geological (to 30 m below the seabed) data acquired during survey GA0334 in the Vlaming Sub-basin. These data and their interpretations are being used to support the investigation of the Vlaming Sub-basin for CO2 storage potential.

  • Objectives To determine whether there are patterns in cancer occurrence in NSW which might be related to geological setting, in particular the occurrence of elevated uranium in granites. Methods The full cancer record of the top 10 cancers for NSW for the period 1974-2003 was obtained from the NSW Cancer Registry, along with Census data from the ABS, and geological data from Geoscience Australia. Geostatistical methods were used to predict the spatial distribution of radiogenic granites across NSW. Analyses were carried out in ArcGIS to map 1) the spatial distribution of cancer occurrence by Statistical Local Area (SLA), 2) relate it to census data for the determination of Standardised Morbidity Ratios, and 3) calculate a range of spatial statistics to determine local and global spatial autocorrelation and hotspots. SatScan statistical cluster analysis software was used to analyse the distribution of common ingestion related cancers, excluding lung cancer, using a Poisson spatial model. Results The spatial statistical analysis in ArcGIS indicates the presence of strong autocorrelation in cancer incidence in south-eastern NSW as well as high clustering in the data. The SatScan analysis identified primary clusters in the Hunter Valley, western Sydney and south-eastern NSW. The Hunter Valley and western Sydney clusters are most likely due to industrial exposure, but this is unlikely for south-eastern NSW. Elevated uranium in granites occurs primarily in south-eastern NSW and to a lesser extent in northern NSW. Conclusion Results indicate a potential correlation exists between highly radiogenic granite bodies and elevated rates of cancer incidence, although it is difficult to ascertain exposure modes and the influence of other confounders such as exposure to agricultural chemicals, nitrates in drinking water and lifestyle effects.

  • The Tasmanian Shelf survey was conducted on the Challenger in collaboration with the Tasmanian Aquaculture and Fisheries Institute between the 13-16th June, 2008 and 23rd February to the 14th March, 2009 (GA survey #0315). The survey was operated as part of the Surrogates Program of the CERF Marine Biodiversity Hub. The objective was to collect co-located physical and biological data to enable the robust testing of a range of physical parameters as surrogates of benthic biodiversity patterns. A total of 55 video transects were surveyed from five study areas (Tasman Peninsula, Freycinet Peninsula, The Friars, Huon river, and Port Arthur channel) in water depths ranging from 15-110 m. Video was recorded to mini DV tapes, and copied to digital format. For further information on this survey please refer to the post-survey report (GA Record 2009/043 - Geocat #69755).

  • Moreton Bay (MB) is a large (~1800 square km), stressed (with recent outbreaks of the cyanobacteria Lyngbia majscula), sub-tropical estuary which receives urban and rural runoff from a large catchment. Silicon is an essential nutrient for diatomaceous phytoplankton growth in coastal ecosystems. BSi (biogenic silicon) in surface sediments, pore water DSi (dissolved silicate, SiO4--) and benthic DSi fluxes were used as tracers of the formation and degradation of organic matter (OM) in MB. This work has implications for N & P cycling, water quality and eutrophication. BSi, TOC (both up to 2 wt%), TN & TP and diatom sterol biomarkers were all highest in the muddy sediments of western MB that is ~65% of the bay's area. We found that diatoms dominated OM cycling in western MB, and the benthic DSi flux accounted for ~80% of the pelagic productivity. Our conceptual model is that diatoms being heavy (because of their Si content) sink rapidly to the sediments where their biomass-N (OM-N) was denitrified to N2 and lost to the atmosphere with an efficiency of about 50%. Approximately 60% of OM-P, subsequent to degradation, remained trapped within the sediment. Diatoms therefore are an important vector to repeatedly deliver river-borne N & P to their respective sinks. However, diatomaceous OM contributed only about 20% of the OM input to the marine sands of eastern MB, about 34% of the bay's area. The principal OM input to the sandy sediments was attributed to benthic photosynthesis and N-fixation with rates of N-fixation (estimated from pore water DIN gradients) at 1.5 - 3.5 mmol m-2d-1. OM was rapidly and efficiently degraded (principally by O2), with little net accumulation and burial in sediments. N was denitrified efficiently (~100%). DIP must have been recycled rapidly in the top few cm's of the sandy sediments to support N-fixation. A whole-bay silicate budget indicated that: 1. DSi fluxes through the western margin of MB were about 4- fold those in eastern MB. 2. Pelagic diatom productivity was supported (approximately) by the benthic fluxes of DSi. 3. The DSi inventory was recycled through diatomaceous phytoplankton in about 15 days. 4. The export of DSi to the sea was about the same as the combined terrestrial and small marine inputs.

  • Community concern about changes in the earth's environment has intensified during the past decade. The Government's response is reflected in the Prime Minister's statement on the Environment, in the setting up of the Resource Assessment Commission to investigate the developmental and environmental use of resources, and in the ASTEC review of environmental research in Australia. There is increasing recognition that science provides the framework for the protection of the Australian environment and for the responsible use of its resources. The geosciences are vital for the understanding of the environment, the development of essential resources, and the simultaneous conservation of environmental quality and diversity. The Government's new charter for BMR, tabled in the Senate in June 1989, recognised the need for BMR to provide the knowledge base for the resolution of environmental issues. For BMR to respond to the increasing demand for geoscientific base line data and advice in the context of sustainable development for Australia, it needs to identify the areas of geoscience necessary to take on a new role in understanding and conserving Australian earth resources in parallel with its traditional role of guiding the development of those resources. It is proposed that new environmental projects should be managed under a new Unit of Environmental Geoscience. For 1989/90 the development of the program will require approximately 1% of BMR resources - in professional staff and funding. In 1990/91, expenditure should be close to 2%. For fully operational programs in 1991/92 we estimate costs will be around 5-6% of total BMR resources.

  • Mapping of benthic habitats seldom considers biogeochemical variables or changes across time. We aimed to: (i) develop winter and summer benthic habitat maps for a sandy embayment; and (ii) compare the effectiveness of various maps for differentiating infauna. Patch-types (internally homogeneous areas of seafloor) were constructed using combinations of abiotic parameters, and are presented in sediment-based, biogeochemistry-based and combined sediment/biogeochemistry-based habitat maps. August and February surveys were undertaken in Jervis Bay, Australia, to collect samples for physical (%mud, sorting, %carbonate), biogeochemical (chlorophyll a, sulfur, sediment metabolism, bio-available elements) and infaunal analyses. Boosted Decision Tree and cokriging models generated spatially continuous data-layers. Habitat maps were made from classified layers using GIS overlays, and were interpreted from a biophysical-process perspective. Biogeochemistry and %mud varied spatially and temporally, even in visually homogeneous sediments. Species turnover across patch-types was important for diversity, and the utility of habitat maps for differentiating biological communities varied across months. Diversity patterns were broadly related to reactive carbon and redox which varied temporally. Inclusion of biogeochemical factors and time in habitat maps provides a better framework for differentiating species and interpreting biodiversity patterns than once-off studies based solely on sedimentology or video-analysis.