From 1 - 10 / 592
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Project In 2013, Geoscience Australia commissioned AAM to undertake a LiDAR survey with accompanying field survey and ortho imagery capture over the Macintyre river region comprising approx 7,500 square kilometres. Ref Deed CMC G3298 Contract CMC G4417. Collection of both LiDAR and simultaneous and near simultaneous imagery utilising the Optech ALTM Pegasus HA500 sensor and the Vision Map A3 digital camera occurred from 06 November 2013 to 17th December 2013 with a total of 20 LiDAR flights plus a very small infill (LiDAR only) flight on 17th March 2014. The LiDAR was controlled from existing CORS GPS stations and 3 newly setup reference GPS station. 158 test point sites that overlapped the LiDAR were surveyed by AAM using Kinematic Smartnet GPS. The specification for this survey was provided in the aforementioned contract document Data The LiDAR, Ortho and field surveys conform in accuracy, format and nomenclature conform to the above specification. The ortho imagery comprises 0.20m GSD RGB Geotiff imagery in Geotiff and ECW formats. The area spans MGA zones 55 and 56 products have been generated with an overlap as per the specification and nomenclature advice from the client.

  • the broad geological blocks from Archaean in the west, through Proterozoic in the centre, to Palaeozoic-Cainozoic in the east, are well presented in the 3-D electrical conductivity model as simple lower conductivity structures. In addition, the model shows conductivity contrast in the western craton, characteristic of enhanced conductivity structures which separate the cratonic blocks, and enhanced conductivity anomalies presented in eastern Australia.

  • The Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR model represents a National 25 metre (bare earth) DEM which has been derived from some 236 individual LiDAR surveys between 2001 and 2015 covering an area in excess of 245,000 square kilometres. These surveys cover Australia's populated coastal zone; floodplain surveys within the Murray Darling Basin, and individual surveys of major and minor population centres. All available 1 metre resolution LiDAR-derived DEMs have been compiled and resampled to 25 metre resolution datasets for each survey area, and then merged into a single dataset for each State. These State datasets have also been merged into a 1 second resolution national dataset.

  • The video explains the challenges faced when managing vast quantities of satellite data, for the benefit of humankind, to address a range of environmental, social and agricultural issues. The video introduces the architecture of the Australian Geoscience Data Cube as a key tool for unlocking Earth observation satellite data, to better manage and store vast amounts of data. The Data Cube has already been used to for understanding water observations from Space and its related application for better flood management. The video also provides a case study of developing a satellite data management infrastructure for Kenya. This video was used to launch Australia¿s tenure as the Chair of the Committee of Earth Observation Satellites (CEOS) at the 2015 Plenary CEOS meeting held in Kyoto, Japan in November 2015. Detailed production information: Concept development: Alex Held (CSIRO), Jonathon Ross (Geoscience Australia), Stephen Ward (Symbios Communications), Bobby Cerini (GA), Stuart Minchin (GA), Alexis McIntyre (GA), Chris McKay (CSIRO) Scriptwriter: Bobby Cerini (Geoscience Australia) Production management/ Direction: Bobby Cerini (Geoscience Australia), Adrian King (Redboat) Post production: Adrian King (Redboat), Peter Butz (Redboat), Woro Larasati (Geoscience Australia), Neil Caldwell (Geoscience Australia), CSIRO Land and Water Animation: Neil Caldwell (Geoscience Australia), Stanislav Galan (Redboat), Artjom Zenevich (Redboat), Adrian King (Redboat), NASA Goddard Space Flight Centre Scientific Visualization Laboratory Videography: Andy Wong (Redboat), Michael O'Rourke (Geoscience Australia) Stock footage: European Space Agency, NASA, AFP, Rick Ray/Shutterstock.com, Stock4KVideo/Shutterstock.com, Rekindle Photo and Video/Shutterstock.com, Frazao Production/Shutterstock.com, paintings/Shutterstock.com Photography: NASA-SEO, Clinton Climate Initiative, Stephen Ward (Symbios Communications) Voice recording: AbesAudio Subtitles: Neil Caldwell (Geoscience Australia), Chantelle Farrar (Geoscience Australia)

  • An article on how to use Minecraft, the computer game, in the teaching of geology in the school classroom.

  • The RadWaste Reporting Tool allows Dept of Industry and GHD staff to analyse and compare Multi Criteria Analysis (MCA) ratings of a site within a nominated location and ascertain the reason for the ranking and score. This tool also outputs a snapshot of the nominated site, giving a context map and scores against requirement criteria.

  • This dataset is the most current national compilation of catchment scale land use data for Australia (CLUM), as at March 2015. It is a seamless raster dataset that combines land use data for all state and territory jurisdictions, compiled at a resolution of 50 metres by 50 metres. It has been compiled from vector land use datasets collected as part of state and territory mapping programs through the Australian Collaborative Land Use and Management Program (ACLUMP). Catchment scale land use data was produced by combining land tenure and other types of land use information, fine-scale satellite data and information collected in the field. The date of mapping (1997 to 2014) and scale of mapping (1:20 000 to 1:250 000) vary, reflecting the source data capture date and scale. This information is provided in a supporting polygon dataset.

  • This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.

  • Compilation of new and existing data can be used to show systematic variations in initial ore-related Pb isotope ratios and derived parameters for the Lachlan and Delamerian orogens of southeast Australia. In addition to mapping tectonic boundaries and providing genetic context to mineralising processes, these variations map mineralised provinces at the orogenic scale and can provide vectors to ore at the district scale. In New South Wales and Victoria, mapping using a parameter termed the 'Lachlan Lead Index' (LLI), which measures relative mixing between crustal- and mantle-derived Pb using the curves of Carr et al. (1995, Economic Geology 90:14671505), clearly demarcates the boundary between the Eastern and Central Lachlan provinces, and seems to identify boundaries between zones within the Western Lachlan Province of Victoria. The LLI also maps the extent of the isotopically juvenile Macquarie 'Arc' in New South Wales. However, rocks in the Rockley-Gulgong Belt, initially mapped as part of the Macquarie Arc, have a more evolved isotopic character, suggesting that these rocks are not part of the Macquarie Arc. This interpretation supports recent mapping that casts doubt on the attribution of this belt to the Macquarie Arc (Quinn, et al., 2014, Journal of the Geological Society of London 171:723736). The LLI has also identified small exposures of Ordovician volcanic rocks, well removed from the main Macquarie Arc, as possible correlates to this arc, with potential to host porphyry and epithermal deposits. Metallogenically, porphyry Cu-Au deposits in the Macquarie Arc are characterised by juvenile Pb. In contrast, Sn and Mo deposits in the Central Lachlan Province (i.e., the Wagga tin belt) are characterised by highly evolved Pb even though these deposits formed over 30 million years. Moreover, the Pb isotope data suggest that the original interpretation that copper deposits in the Girilambone district are volcanic-associated massive sulfide deposits was correct and that these deposits formed in a back-arc to the Macquarie Arc at ~480 Ma. In the Mount Read Volcanics of western Tasmania, all deposits appear to cluster along the same growth curve. However, when divided according to age (i.e., Cambrian (~500 Ma) versus Devonian (~360 Ma)), spatial patterns are visible in 206Pb/204Pb data. For Cambrian deposits 206Pb/204Pb decreases overall to the southeast, although low values are also present in the far south (i.e., Elliott Bay) and northeast. The most highly mineralised central part of the belt seems to be broadly associated with the zone of highest 206Pb/204Pb. Variations in 206Pb/204Pb for Devonian deposits broadly mimic the patterns seen for the Cambrian deposits. More importantly, a district-scale pattern in 206Pb/204Pb is present in the Zeehan district. Isotopically, the Sn-dominated core of the Zeehan district (e.g. Queen Hill and Severn deposits) is characterised by high 206Pb/204Pb, which decreases outward into the Zn-Pb-Ag-dominated peripheries. Lead isotope distribution patterns can potentially be used as an ore vector in this and other intrusion-centered mineral systems.