From 1 - 10 / 80
  • The central aim of the Comparative Geomorphology of Estuaries Project of the Coastal CRC was to improve our understanding of Australia's near-pristine estuaries. As the title implies, the project had a geomorphic focus in that a major output was mapping of geomorphic habitats of a representative selection of nearpristine estuaries from around Australia.

  • The Rowley Shoals/Offshore Canning and Roebuck basins survey was conducted on the RV Southern Surveyor survey SS06/2006 (GA-2408) between the 29th May and 22 June 2006. The primary aim of the survey was to identify any sites of natural hydrocarbon seepage, that may provide direct evidence for an active petroleum system within the sub‐surface. A secondary objective was to contribute to the understanding of the modern sedimentary and oceanographic processes influencing this part of the shelf, and to assess the nature of the benthic habitats. Underwater video was captured at 12 sites, with a minimum of 10 minutes to 60 minutes at each site, which totalled approximately 5.5 hours of footage. Video was recorded to mini DV tapes and copied to digital format. Descriptions of footage acquired during the underwater video tows are provided in the post-survey report (GA Record 2007/21 - Geocat # 65453). Please note that the underwater video is unclipped, contains descent and ascent through the water column, laser points in the video are reported to be spaced at 25 cm, and start locations of the underwater video camera stations are found in the Post-survey report.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science & Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 42 sample data set comprises the mineraology of surface seabed sediment (~0-2 cm) in Jervis Bay. More information: Radke, L.C., Huang, Z., Przeslawski, R., Webster, I.T., McArthur, M.A., Anderson, T.J., P.J. Siwabessy, Brooke, B. 2011. Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62 (12): 1432 - 1448. Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J. and Brooke, B. 2012. Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. International Journal of Geographical Information Science DOI:10.1080/13658816.2012.658808.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science & Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 128 sample data set comprises major, minor and trace elements derived from x-ray fluorescence analysis of surface seabed sediments (~0-2 cm). Sediment surface area data are also presented. More Information: Radke, L.C., Huang, Z., Przeslawski, R., Webster, I.T., McArthur, M.A., Anderson, T.J., P.J. Siwabessy, Brooke, B. 2011. Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62 (12): 1432 - 1448. Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J. and Brooke, B. 2012. Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. International Journal of Geographical Information Science DOI:10.1080/13658816.2012.658808.

  • In this review we aim to synthesise physical and biological information on the Lord Howe Rise (LHR) region to describe its biogeography at a regional scale (100s of kilometres) and assess this in a national and global context. The LHR region is large (1.95 million km2), spans tropical and cool temperate latitudes (18.4oS to 40.3oS), and is topographically complex being formed of large expanses of soft sediment basins and plateaus (i.e. subdued bathymetric features), with scattered seamounts, guyots, knolls, and pinnacles (i.e. raised bathymetric features). Physical factors can vary between these two broad feature types, particularly regarding depth and substrate, although no clear relationship was detected between sediment texture and geomorphic features across the survey area. Biological data from two recent surveys (TAN0713 and NORFANZ) show differences in assemblages and species distribution between raised and subdued bathymetric features and suggest that biological communities are indeed influenced by substrate as well as depth-related variables, with some taxa such as demersal fish showing latitudinal gradients. There are only limited spatially-replicated studies and no time-series data available for most of the LHR region, but paleo-environmental processes and examples from other regions provide some indication of migration, speciation, and endemism in the LHR region.

  • Geoscience Australia has undertaken a classification of biophysical datasets to create seabed habitat maps (termed 'seascapes') for the Australian margin and adjacent sea floor. Seascapes describe a layer of ecologically meaningful biophysical properties that spatially represents potential seabed habitats. Each seascape area corresponds to a region of the seabed that contains similar biophysical properties and, by association, potential habitats and communities. This dataset is a seascape classification for the on-shelf zone of the North-west bioregion. The on-shelf zone is separated from the off-shelf zone due to the availability of the effective disturbance layer for the on-shelf zone only. Also, a higher resolution sea floor temperature layer has been used in the on-shelf analysis.

  • This study presents compelling evidence for a diverse and abundant seabed community which has developed over the course of the Holocene beneath the Amery Ice Shelf in East Antarctica. Fossil analysis of a 47 cm long sediment core reveals a rich modern fauna, dominated by filter feeders (sponges and bryozoans), with an abundant infauna predominantly of polychaetes. The down-core assemblage reveals a succession in the colonisation of this site. The lower portion of the core (prior to ~9600 yr BP) is completely devoid of preserved fauna. The first colonisers of the site after this time were the mobile benthic organisms. Their occurrence in the core is matched by the first appearance of planktonic taxa, indicating a retreat of the ice shelf following the last glaciation to within sufficient distance to advect planktonic particles via bottom currents. The benthic infauna and filter feeders emerged during the peak abundance of the planktonic organisms, indicating their dependence on this advected food supply which is brought via bottom currents flowing from the open shelf waters of Prydz Bay. Understanding patterns of species succession in this environment has important implications for determining the potential significance of future global change. The collapse of Antarctic ice shelves, as has happened in recent times, would significantly change the organic supply regime, and therefore the nature of these sub-ice shelf benthic communities.

  • Submarine canyons have been recognised as areas of significant ecological and conservation value for their enhanced primary productivity, benthic biomass and biodiversity. In Australia, 753 submarine canyons were mapped on all margins of the continent by the Marine Biodiversity Hub through the Australian Government's National Environmental Research Program. An analysis of canyon geomorphic metrics provided the basis to objectively classify these canyons across a hierarchy of physical characteristics (e.g. volume, depth range, rugosity) separately for shelf-incising and slope-confined canyons (Huang et al., 2014). Here we extend this analysis to include oceanographic variables in presenting a first pass assessment of habitat quality for all canyons on the Australian margin, with a focus on their upper reaches. This study is based on the premise that habitat heterogeneity, productivity and disturbance are the three factors that potentially determine the quality of a canyon habitat. For each factor we derived a range of variables to inform the assessment of habitat quality (see Table). Habitat heterogeneity was measured using a selection of eight geomorphic metrics including canyon volume and rugosity that are considered likely to have a positive relationship with habitat heterogeneity. Canyon productivity was assessed from five variables including: distance to the shelf break as a proxy of nutrient inputs from land and the continental shelf; bottom current speed as an indicator of nutrient supply to benthic epifauna (derived from time-series re-analysis of the BLUElink oceanographic model and in-situ data), and; measures of the probability, frequency and intensity of upwelling (also from BLUElink data). The BLUElink variables have positive relationships with productivity whereas the relationship between distance to shelf and productivity is negative. Benthic disturbance was assessed from the maximum and range of bottom current speeds, and the frequency and intensity of tropical cyclones. According to these relationships, individual canyons were assigned habitat quality scores, first separately for each variable and then aggregated for the three habitat factors. The final scores were obtained by averaging the scores of the three habitat factors. The results show that many submarine canyons on the eastern Australian margin have high habitat quality scores (see Figure). This is interpreted to be mainly due to the influence of the upwelling-favourable East Australian Current which generates high productivity throughout the year. The Albany canyons on the south-western margin also offer high habitat quality for marine species due to complex geometrical and geophysical structures. They also benefit from the upwelling-favourable Flinders Current. In contrast, canyons on the northern and western margins have lower habitat quality. Many of these canyons receive little input from land and continental shelf. In addition, the downwelling- favourable Leeuwin Current, which flows along the western margin of the continent, hampers the supply of deep water nutrients from reaching the upper reaches of canyons, particularly canyon heads that intersect the euphotic zone. Overall, these results provide a framework for targeted studies of canyons aimed at testing and verifying the habitat potential identified here and for establishing monitoring priorities for the ongoing management of canyon ecosystems.

  • Geoscience Australia is investigating the suitability of offshore sedimentary basins as potential CO2 storage sites. In May 2012 a seabed survey (GA0335/SOL5463) was undertaken in collaboration with the Australian Institute of Marine Science to acquire baseline marine data in the Petrel Sub-basin, Joseph Bonaparte Gulf. The aim was to collect information on possible connections (faults and fluid pathways) between the seabed and key basin units, and to characterise seabed habitats and biota. Two areas were surveyed (Area 1: 471 km2, depth ~ 80-100 m; Area 2: 181 km2, depth ~ 30-70 m), chosen to investigate the seabed over the potential supercritical CO2 boundary (Area 1) and the basin margin (Area 2), with Area 2 located around Flat Top 1 Well. Data analysed include multibeam sonar bathymetry and backscatter, seabed samples and their geochemical and biological properties, video footage and still images of seabed habitats and biota, and acoustic sub-bottom profiles. Pockmarks, providing evidence for fluid release, are present at the seabed, and are particularly numerous in Area 1. Area 1 is part of a sediment-starved, low-relief section of shelf characterised by seabed plains, relict estuarine paleochannels, and low-lying ridges. Facies analysis and radiocarbon dating of relict coastal plain sediment indicates Area 1 was a mangrove-rich environment around 15,500 years ago, transgressed near the end of the Last Glacial period (Meltwater Pulse 1A). Modern seabed habitats have developed on these relict geomorphic features, which have been little modified by recent seabed processes. Seabed habitats include areas of barren and bioturbated sediments, and mixed patches of sponges and octocorals on hardgrounds. In the sub-surface, stacked sequences of northwest-dipping to flat-lying, well-stratified sediments, variably incised by palaeochannels characterise the shallow geology of Area 1. Some shallow faulting through these deposits was noted, but direct linkages between seabed features and deep-seated faults were not observed. Area 2 is dominated by carbonate banks and ridges. Low-lying ridges, terraces and plains are commonly overlain by hummocky sediment of uncertain origin. Pockmarks are present on the margins of banks, and on and adjacent to ridges. Despite the co-location of banks and ridges with major faults at depth, there is a lack of direct evidence for structural connectivity, particularly because of significant acoustic masking in the sub-surface profiles of Area 2. While no direct structural relationship was observed in the acoustic sub-bottom profiles between these banks, ridges and faults visible in the basin seismic profiles, some faults extend through the upper basin units towards the seabed on the margin of Area 2. No evidence was detected at the seabed for the presence of thermogenic hydrocarbons or other fluids sourced from the basin, including beneath the CO2 supercritical boundary. The source of fluids driving pockmark formation in Area 1 is most likely decomposing mangrove-rich organic matter within late Pleistocene estuarine sediments. The gas generated is dominated by CO2. Additional fluids are potentially derived from sediment compaction and dewatering. Conceptual models derived from this are being used to inform regional-scale assessments of CO2 storage prospectivity in the Petrel Sub-basin.

  • The Vlaming Sub-basin Marine Survey GA-0334 was undertaken in March and April 2012 as part of the Commonwealth Government's National CO2 Infrastructure Plan (NCIP). The purpose was to acquire geophysical and biophysical data to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. This dataset contains identifications of animals collected from 32 Van Veen grabs deployed during GA-0334. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification (see `lineage'). During sorting, all worms were separated and sent to Infaunal Data Pty Ltd (Lynda Avery) for identification to species or operational taxonomic unit (OTU). Lynda Avery completed identifications on 17 April 2013, and specimens were lodged at the Museum of Victoria. All other taxa were identified to morphospecies at GA by an ecologist. Gray shading indicates taxa identified to species level by Lynda Avery (Refer to GeoCat # 76463 for raw data of species identifications by taxonomist); all other taxa were identified to morphospecies. Data is presented here exactly as delivered by the taxonomist/ecologist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications. Stations are named XXGRYY where XX indicates the station number, GR indicates Van Veen grabs, and YY indicates the sequence of grabs deployed (i.e. the YYth grab on the entire survey). H indicates heavy fraction animals and HS indicates animals found on a sponge. The dataset is current as of November 2014, but will be updated as taxonomic experts contribute. See GA Record 2013/09 for further details on survey methods and specimen acquisition.