From 1 - 10 / 1022
  • This data set comprises one of three archives of Geoscience Australia work in the project "A Consistent Approach to Groundwater Recharge Determination in Data Poor Areas". The project was carried out by CSIRO and Geoscience Australia and was funded by the National Water Commission Raising National Water Standards program. The data contained included Original data sourced for the project, Final data produced by the project, MXD's of maps created, and tools used within the project. The archives created for this project comprise: 1. Data archive. Data set stored in the GA CDS. Geocat Record number 79804 2. Adminstration and publication archive. Documents stored in TRIM Project P10/67 RECHARGE-DISCHARGE PROJECT 3. References archive. Endnote library located at \\nas\eg\water\References\Recharge_Discharge_Project.enl For more information about the creation of these archives, including the location of files, see TRIM D2014-102808 For more information about the project, see the following references: Leaney F, Crosbie R, O'Grady A, Jolly I, Gow L, Davies P, Wilford J and Kilgour P. 2011. Recharge and discharge estimation in data poor areas: Scientific reference guide. CSIRO: Water for a Healthy Country National Research Flagship. 61 pp (GA Record No. 2011/46 GACat # 71941) Jolly I, Gow L, Davies P, O'Grady A, Leaney F, Crosbie R, Wilford J and Kilgour P. 2011. Recharge and discharge estimation in data poor areas: User guide for the recharge and discharge estimation spreadsheets and MapConnect. CSIRO: Water for a Healthy Country National Research Flagship. 40 pp. (GA Record No. 2011/35 GeoCat # 71940) Pain, C.F., Gow, L.J, Wilford, J.R. and Kilgour, P. 2011. Mapping approaches to recharge and discharge estimation and associated input datasets. A report for CSIRO: Water for a Healthy Country National Research Flagship. (Professional Opinion No. 2011/01 GeoCat # 70392)

  • This is a placeholder record only. The product may be released by GA in the future, but at the moment we are only hosting the metadata.

  • The Georgina-Arunta deep seismic reflection line (09GA-GA1) has provided an image of the entire crust in this part of central Australia. At a first approximation, beneath the Neoproterozoic-Devonian sedimentary basins, the crust can be divided into four distinct regions, namely, the Aileron, Irindina and Davenport Provinces, and the Ooratippra Seismic Province. Each of these regions is separated from each other by major, crustal-scale faults. The observed crustal architecture has implications for geodynamic models for the evolution of the region, implying amalgamation of these crustal blocks in the Paleoproterozoic and major shortening and basin inversion in the Paleozoic.

  • Image showing gravity sation coverage and relative reliability over Australia, updated to May 2011

  • This Record presents data collected as part of the ongoing NTGS-GA geochronological collaboration between July 2000 and June 2011 under the National Geoscience Agreement (NGA). This record presents new SHRIMP U-Pb zircon and monazite geochronological results for 18 samples from the Arunta Region, Davenport Province, Simpson Desert and Pine Creek Orogen in the Northern Territory. Five Paleoproterozoic igneous and metasedimentary samples were collected from the Eastern Arunta (ILLOGWA CREEK), and one metasedimentary sample from the eastern Casey Inlier (HALE RIVER). One igneous volcanic sample and two metasedimentary samples are from the Davenport Province (MAPSHEET) and Simpson Desert regions (HAY RIVER), respectively. Ten samples in total were collected from the Pine Creek Orogen; one igneous sample from DARWIN, the remainder being igneous and metasedimentary samples from the Nimbuwah Domain (ALLIGATOR RIVER).

  • Abstract is too large to be pasted here. See TRIM link: D2011-144613

  • Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The "challenger" folder contains processed multibeam backscatter data of the South East Tasmania Shelf. The SIMRAD EM3002 multibeam backscatter data were processed using the CMST_GA MB Process, a multibeam processing toolbox codeveloped by Geoscience Australia and Curtin University of Technology.

  • Known magmatic-related uranium mineralisation is rare in Australia, despite the widespread occurrence of uranium-rich igneous rocks. Known intrusive-related mineralisation is almost entirely restricted to South Australia, while uranium mineralisation related to volcanic rocks is mostly known from northern Queensland. This apparent discrepancy suggests that Australia is under-represented in this category of uranium mineral system, and as such, the potential for future discoveries is inferred to be high. Recent work by Geoscience Australia has sought to enhance the prospectivity for a range of uranium mineral system types in Australia, including those related to magmatic rocks, by undertaking regional scale assessments of the potential for these systems. Using a similar approach, an assessment for the potential for magmatic-related uranium mineral systems has been undertaken in a systematic manner on a national scale. This has been done in a GIS environment using the fuzzy logic method, which allows for uncertainty to be captured while being relatively easy to implement. Two subcategories of magmatic-related uranium systems have been assessed: intrusive- and volcanic-related. Rather than attempting to identify specific sites of mineralisation, this investigation has focused on delineating those igneous units and events which have the highest potential for a magmatic-related uranium mineral system to operate. This allows for potentially prospective tracts to be readily identified, in which the mineral potential and uranium depositional sites may be refined using detailed local knowledge and datasets. Potentially prospective igneous rocks have been identified in all States and Territories where uranium exploration is currently permitted, including regions already known for magmatic-related uranium occurrences. Significantly, this study has identified high potential in regions which are currently not well known for magmatic-related uranium mineralisation.

  • In 2009, as part of its Onshore Energy Security Program, Geoscience Australia, in conjunction with the Northern Territory Geological Survey, acquired 373 km of vibroseis-source, deep seismic reflection, magnetotelluric and gravity data along a single north-south traverse from the Todd River in the south to nearly 30 km north of the Sandover Highway in the north. This traverse, 09GA-GA1, is referred to as the Georgina-Arunta seismic line, extends from the northeastern Amadeus Basin, across the Casey Inlier, Irindina and Aileron provinces of the Arunta Region and Georgina Basin to the southernmost Davenport Province. Here, we report the results of an initial geological interpretation of the seismic and magnetotelluric data, and discuss some preliminary geodynamic implications.

  • This study looks at the question of whether time-lapse gravity measurements could be used to monitor the density and geometry carbon dioxide plume in the ground for a typical Gippsland Basin reservoir. The considerations made indicate that gravity measurements would not be suitable as a means to detect carbon dioxide density, distribution and movement in a reservoir the size of the West Seahorse field. The maximum gravity anomaly that would be expected is calculated to be 1.4 -Gal, while the experience in other parts of the world, using sensitive sea floor gravity metres, indicate that at present this technology can resolve about 5 -Gal. Furthermore, the horizontal and vertical gradients of the maximum anomaly are of the order of 0.007 E ( 0.007 ?m/s2/km), while the most sensitive reported airship measurements of gravity gradient are reported to be resolving of the order of 1.7 E.