2011
Type of resources
Keywords
Publication year
Scale
Topics
-
This professional opinion assesses the viability of utilising the priority aquifer target GWMAR1 to secure Broken Hill's water supply, both as an extractive only scheme and as a conjunctive use scheme employing Managed Aquifer Recharge as a key component. This work comes under the arrangements of the Broken Hill Managed Aquifer Recharge Project Phase 3a Memorandum of Understanding. The report addresses, with confidence levels, the following issues: Option 1: Groundwater Extraction Only. This includes an estimation of the water storage capacity and ambient groundwater salinity of the GWMAR1 priority target and the Jimargil sub-area. Different confidence levels are attached to these two estimates, reflecting the focus of work to date on the Jimargil sub-area. Broader groundwater quality issues will also be discussed. An assessment is also made of the issues with respect to direct groundwater extraction as the sole option for securing Broken Hill's water supply for a minimum of 3 years (approximately 30GL). Option 2 assesses the use of the GWMAR1 priority aquifer as part of a conjunctive water supply incorporating Managed Aquifer Recharge. This includes an assessment of the suitability of the priority MAR target at Jimargil based on the National MAR Risk Assessment Guidelines. The report also includes specification of the remaining information gaps and potential risks to a project to utilise the aquifer for (1) Groundwater extraction and (2) a conjunctive supply utilising Managed Aquifer Recharge. Broken Hill and Menindee. The report also includes a short summary of communities in Australia that currently rely on Managed Aquifer Recharge to supply their potable water, and management issues associated with this supply, and future considerations to a possible implementation phase of providing water security to Broken Hill and Menindee from a regional aquifer.
-
This map shows the estimated extent of banana plantations that have been detected on the RADARSAT-2 image acquired on 2nd February 2011, two days prior to Tropical Cyclone Yasi (TC Yasi) impacting the area. Map is topographic data on a imagery background.
-
Part of Ministerial submission includes 4 maps in GeoCat Record 71221 Not for sale or public distribution Manager LOSAMBA project, EGD
-
The Geoscience Australia (GA) building located in Symonston, ACT utilises one of the largest GSHP systems in the southern hemisphere. It is based on a series of 210 geothermal heat pumps throughout the general office area of the building, which carry water through loops of pipe buried in 352 bore holes each 100 metres deep and 20cm in diameter. The system is one of the largest and longest operating of its type in Australia, providing an opportunity to examine the long term performance of a GSHP system. A 10-year building review conducted in 2007 estimated that the system had saved about $400,000 in electricity costs. When comparing energy performance in the annual 'Energy Use in the Australian Government Operations' reports, the GA building has maintained energy performance and targets that might normally be expected of a general office administration building. This is significant given the requirements to provide additional fresh air to laboratories and 24/7 temperature control to special storage areas. The energy savings can be attributed to the GSHP system and other energy efficient design principles used in the building.
-
Progress report for Milestone 8 of Palaeovalley Groundwater project. Report prepared by Geoscience Australia for delivery to National Water Commission.
-
Sub-sampling is a commonly used technique to reduce the amount of time and effort for investigating biological specimens of, especially, a large quantity. However, it is not immediately clear how sub-sampling may affect the estimates of biodiversity measures such as species presence/absence, richness and abundance by using such sub-sampled data. This article quantifies the effect of sub-sampling as attenuation of the species abundance distribution. Its theoretical description is derived by accounting for the random sampling scheme of finite populations and is illustrated using sub-sampled data collected by a marine survey. It shows the theory and data are in agreement. Our method can be used to set benchmarks for sub-sampling schemes since the departure from this model estimates the unexpected bias peculiar to the sub-sampling scheme adopted. This quantification also enables the effect of sub-sampling to be incorporated into further model development for biodiversity estimates.
-
The seismicity of the Australian continent is low to moderate by world standards. However, the seismic risk is much higher for some types of Australian infrastructure due to an incompatibility of structural vulnerability with local earthquake hazard. The earthquake risk in many regional neighbours is even higher due to high hazard, community exposure and vulnerability. The Risk and Impact Analysis Group is a multidisciplinary team at Geoscience Australia that is actively engaged in research to better understand earthquake risk in Australia and to assist agencies in neighbouring countries develop similar knowledge. In this presentation aspects of this work will be described with a particular focus on engineering vulnerability, post disaster information capture and how both can point to effective mitigation options. Risk is the combination of several components (hazard, exposure, vulnerability and impact) that combine to provide measures that can be very useful for decision makers. Vulnerability is the key link that translates hazard exposure to consequence. Vulnerability is typically expressed in physical terms but includes interdependent utility system vulnerability, economic activity vulnerability and the social vulnerability of communities. All four vulnerability types have been the subject of research at GA but the physical vulnerability is the primary link to the others. Vulnerability research for Australian infrastructure will be presented in the context of a holistic risk framework. Furthermore, the work in the Philippines to develop a first order national suite of models will also be presented. Post disaster survey data is invaluable for understanding the nature of asset vulnerability, developing empirical models and validating analytical models based on structural models. Geoscience Australia has developed a range of tools to assist with damage capture that have been used for several hazard types, including earthquake. Tools include portable street view imagery capture, GPS technology and hand-held computers. Experience with the application of these tools and the information that has been derived will be described along with current activity to improve their utility.
-
The impacts of climate change on sea level rise (SLR) will adversely affect infrastructure in a significant number of Australian coastal communities. A first-pass national assessment has identified the extent and value of infrastructure potentially exposed to impacts from future climate by utilizing a number of fundamental national scale datasets. A mid-resolution digital elevation model was used to model a series of SLR projections incorporating 100 year return-period storm-tide estimates where available (maximum tidal range otherwise). The modeled inundation zones were overlaid with a national coastal geomorphology dataset, titled the Smartline, which identified coastal landforms that are potentially unstable under the influence of rising sea level. These datasets were then overlain with Geoscience Australia's National Exposure Information System (NEXIS) to quantify the number and value of infrastructure elements (including residential and commercial buildings, roads and rail) potentially vulnerable to a range of sea-level rise and coastal recession estimates for the year 2100. In addition, we examined the changes in exposure under a range of future Australian Bureau of Statistics population scenarios. We found that over 270,000 residential buildings are potentially vulnerable to the combined impacts of inundation and recession by 2100 (replacement value of approximately $A72 billion). Nearly 250,000 residential buildings were found to be potentially vulnerable to inundation only ($A64 billion). Queensland and New South Wales have the largest vulnerability considering both value of infrastructure and the number of buildings affected. Nationally, approximately 33,000 km of road and 1,500 km of rail infrastructure are potentially at risk by 2100.
-
Tropical cyclones pose a significant threat to islands in the tropical western Pacific. The extreme winds from these severe storms can cause extensive damage to housing, infrastructure and food production. As part of the Pacific Climate Change Science Program (PCCSP), Geoscience Australia assessed the wind hazard posed by tropical cyclones for 14 islands in the western Pacific and East Timor. The wind hazard was assessed for both the current climate and for the future climate under the A2 SRES emission scenario. Wind hazard maps were generated using Geoscience Australia's Tropical Cyclone Risk Model (TCRM) that applies a statistical-parametric process to estimate return period wind speeds. To obtain a robust estimate of wind hazard from a short historical track record, TCRM produces several thousand years worth of tracks that are statistically similar to the input track dataset. The model then applies a parametric wind profile to these tracks and fits a Generalized Extreme Value distribution to the maximum wind speeds at each location. To estimate how the hazard may change in the future, tracks of Tropical Cyclone-Like Vortices (TCLVs) detected in dynamically downscaled global climate model are used as input into TCRM. This is performed for four downscaled global climate models for two twenty year periods centered on 1990 and 2090 under the A2 SRES emission scenario. This study provides the first detailed assessment of the current wind hazard for this region, despite the fact that these counties are both highly exposed and vulnerable to these severe storms. The hazard climate projections should be treated with caution due to known deficiencies in the global climate models and poor agreement between models of the hazard projections. However, keeping these limitations in mind, the results suggest that the wind hazard will decrease north of 20º latitude in the South Pacific by 2090.
-
A new continental-scale geochemical atlas and dataset for Australia were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...