From 1 - 10 / 20
  • Small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) are used to directly detect the processes of hydrocarbon generation in the 10 nm to 10 μm size pores in carbonate and siliciclastic rocks which contain no land-plant material suitable for conventional maturity determination by vitrinite reflectance. The method takes advantage of the pore-size-specific variation of neutron scattering contrast between the solid rock matrix and pore-space content with depth, which is caused by thermal maturation of organic matter through the oil and gas generation windows. SANS and USANS measurements were performed on bedding plane-orientated core slices, extracted from a series of 10 to 12 depth intervals for three wells, CKAD0001, MacIntyre 1 and Baldwin 1 in the southern Georgina Basin, central Australia. The depth intervals, intersecting the organic-rich basal ‘hot’ shales of the middle Cambrian Arthur Creek Formation, were selected based on Rock-Eval pyrolysis data. SANS and USANS results indicate that oil generation has occurred in the past in nano-sized pores in rocks that are now at depths of around 538.4 m in CKAD0001 and 799.3 m in MacIntyre 1. Furthermore, in the CKAD0001 well, the oil-wet pores extend into the larger pore-size range (at least up to 10 μm) due to the efficient expulsion of oil. At around 880 m in Baldwin 1, the influence of pyrobitumen reverts pore space from gas wet to oil wet. These hydrocarbons have remained in situ since the Devonian when the Neoproterozoic to Paleozoic section was exhumed in the Alice Springs Orogeny and subsequently eroded, preserving only remnants of the once extensive basin sediments.

  • Small-angle neutron scattering (SANS) measurements were performed on 32 rock samples from the southern Georgina Basin, central Australia to assess nanopore anisotropy. Anisotropy can only be determined from oriented core material, hence the samples were cut perpendicular to bedding in cores selected from three wells that intersect the base of the hydrocarbon-bearing, organic-rich middle Cambrian Arthur Creek Formation; the latter is the source rock for both unconventional and conventional plays in the basin. The evolution of anisotropy of two-dimensional SANS intensity profiles with depth (for pore diameters ranging from 10 nm to 100 nm) was quantified and correlated with SANS intensity and total organic carbon (TOC) content. Our results confirm hydrocarbon generation at the base of the Arthur Creek Formation. The nanopore anisotropy in the basal Arthur Creek Formation at the well locations CKAD0001 (oil generation window) and MacIntyre 1 (late oil generation window) varies roughly according to normal compaction. When the Arthur Creek Formation is in the gas window, as sampled at Baldwin 1, there is a strong (negative) correlation between the average vertical-to-horizontal pore shape anisotropy and SANS intensity. The results indicate that unconventional gas production from organic-rich regions of over mature shale may be adversely affected by abnormal pore compaction.

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a newly discovered Proterozoic depocentre in the South Nicholson region, based on interpretation from new seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1751 m. Geoscience Australia conducted an extensive post-drilling analytical program that generated over 30 datasets which the interested reader can find under the EFTF webpage (under the "Data and publications" drop down menu) at https://www.eftf.ga.gov.au/south-nicholson-national-drilling-initiative This record links to the Exploring for the Future 'borehole completion report' for NDI Carrara 1 and access to all on-site downhole geophysical datasets.

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short abstract: </strong>Australian sediment-hosted mineral systems play a crucial role in providing base metals and critical minerals essential for the global low-carbon economy. The Georgina Basin has the key components for forming and preserving a sediment-hosted Zn-Pb mineral system, but historically has been considered ‘cover’ to deeper, more prospective Proterozoic basement rocks. Thus, the basin has remained relatively under-explored, with many questions yet to be resolved on its sediment-hosted Zn-Pb mineral system and prospectivity for Zn-Pb. Utilising new whole-rock and isotope geochemistry of the Georgina Basin from recently drilled holes in the Northern Territory, we demonstrate the sensitivity of local redox boundaries to detect regional mineralisation. Two geochemically enriched zones have been identified and interpreted as redox interfaces which have trapped and concentrated metals from the surrounding basin, a ‘supergene zone’ and a ‘water intercept zone’. The ‘supergene zone’ is a paleo water table horizon, while the ‘water intercept zone’ is an active redox front at the uppermost part of the Cambrian Limestone Aquifer. The enrichment of these redox zones is consistent across multiple drill holes, reaching up to 395 ppm Pb and 1550 ppm Zn. Additionally, the Pb isotopes of high-Pb and sulfidic intervals have a highly radiogenic character (206Pb/204Pb ~22.0–23.0) that is diagnostic of Georgina Basin’s Mississippi Valley-type Zn-Pb mineralisation. Taken together, these results suggest there may be buried mineralisation in this part of the Georgina Basin, as well as highlight the potential of these redox interfaces as a regional reconnaissance target for exploration.</div><div><br></div><div><strong>Citation: </strong>Schroder I.F., Huston D. & de Caritat P., 2024. The geochemistry of redox interfaces for insights into Zn-Pb prospectivity in the Georgina Basin. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149116 </div>

  • <div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>

  • The Exploring for the Future Program facilitated the acquisition of major geoscience datasets in northern Australia, where rocks are mostly under cover and the basin evolution, mineral, energy and groundwater resource potential are, in places, poorly constrained. In an effort to support sustainable, regional economic development and build stronger communities in these frontier areas, integration of new and legacy data within a consistent platform could enhance the recognition of cross-disciplinary synergies in sub-surface resource investigations. Here we present a case study in the South-Nicholson Basin, located in a poorly exposed area between the prospective Mt Isa Province and the McArthur Basin. Both regions host major base metal deposits, contain units prospective for energy resources, and hold significant groundwater resources in the overlying Georgina Basin. In this study, we interpret a subset of new regional-scale data, which include ~1 900 km of deep seismic reflection data and 60 000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with legacy information. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration and groundwater resource management. This study provides a 3D chronostratigraphic cover model down to the Paleoproterozoic basement. We mapped the depth to the base of intervals corresponding to geological eras, as well as deeper pre-Neoproterozoic superbasin boundaries to refine the cover model. The depth estimates, based on the compilation, interpretation and integration of geological and geophysical datasets, inform the basement architecture controls on evolution of the basin, with several key outcomes: 1) expanded mapped size of the South Nicholson Basin, potentially, increasing prospectivity for hydrocarbons and basin-hosted mineralisation, 2) improved stratigraphic unit correlations across the region, 3) identification of major crustal structures, some of which are associated with mineralisation and springs, and 4) improved basin architecture definition, supporting future investigation of groundwater resources.

  • With the increasing need to extend mineral exploration under cover, new approaches are required to better understand concealed geology, and to narrow the mineral prospectivity search-space. Hydrogeochemistry is a non-invasive exploration technique based on the premise that groundwater interacting with a deposit or supergene alteration can cause anomalous elemental and isotopic signatures down-gradient. Water chemistry can reflect mineralisation directly, but can also reveal other key components of a mineral system, including fluid-flow pathways (e.g. fault/fracture zones), evidence for mineral system traps (e.g. evaporites, shales), or metal sources (e.g. mafic rocks). The Northern Australia Hydrogeochemical Survey (NAHS) was a multiyear regional groundwater sampling program that aimed to understand the regional mineral potential within the Tennant Creek to Mt Isa area (Schroder et al. 2020). This presentation will explore the application of NAHS for investigating mineral potential of a region and present a workflow for establishing spatial or lithological baselines to evaluate hydrogeochemical anomalies. The Georgina Basin is well known for its phosphate potential, with several >1Mt deposits discovered in recent years such as Amaroo and Wonarah; however, the basin has been largely unmapped in terms of phosphate distribution under cover. This work focuses on a subset of 160 NAHS samples collected within two predominant aquifers of the Cambrian Georgina Basin (and time equivalents in the Wiso Basin). This focus restricts us to samples which experience a similar climate, recharge conditions, and aquifer compositions, reducing the hydrogeochemical variation that can mask intra-aquifer anomalies. Elevated dissolved phosphate, PO43- (normalised to HCO3- or Cl-), is observed in the groundwater on the eastern margin of the Georgina Basin. This region is known for Cambrian phosphorite deposits, with sampled bores proximal to a number of near-surface Georgina Basin phosphate deposits. We tested trace element (i.e. U, V and REEs) concentrations as a tool for discriminating phosphate dissolution, however at this regional scale of sampling, possible anomalies were only seen in few bores, thus it is difficult to conclude if this is a consistent relationship robust enough for exploration. More promising may be the use of REE ratios as another indicator of proximity to a phosphate deposit. Emsbo et al. (2015) note that REE compositions of phosphates are relatively consistent globally within a geological period. REE spidergrams of the high PO43- waters are similar to the average REE spidergram of Cambrian phosphates, which contrasts to the REE spidergram of low PO43- groundwaters. Cerium and Europium deviations make this relationship less diagnostic, thus we explore a series of REE ratios (i.e. Er/Dy, Er/Gd, Sm/Nd) for characterising PO43- relationships in groundwater, and use this to suggest other regions of the Georgina Basin with potential for subsurface phosphate deposits. References: Emsbo, P., McLaughlin, P.I., Breit, et al., 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Research, 27(2), 776-785. Schroder, I.F., Caritat, P. de, Wallace, L., et al., 2020. Northern Australia Hydrogeochemical Survey: Final Data Release and Hydrogeochemical Atlas for EFTF. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2020.015 Abstract presented at the 2021 Australian Earth Sciences Convention (AESC)

  • <div>This data package is a key output from the integrated, basin-scale hydrogeological assessment of South Nicholson-Georgina as part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program.&nbsp;This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>This data release includes an ESRI geodatabase and ESRI shapefiles with associated layer files:</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Georgina Basin watertable trend surface</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Georgina Basin reduced standing water level (RSWL) contours</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Regional scale groundwater divides</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Groundwater flow paths</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bores with aquifer attribution and water level information where available</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Hydrochemistry data for bores and springs, and aquifer attribution (where available)</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Basin boundary extents</div><div><br></div><div>For more information and detail on these products, refer to associated report, Dixon-Jain et al. (2024).</div><div><br></div><div>Dixon-Jain, P., Bishop, C., Lester, J., Orlov, C., McPherson, A., Pho, G., Flower, C., Kilgour, P., Lawson, S., Vizy, J., Lewis, S. 2024. Hydrogeology and groundwater systems of the South Nicholson and Georgina basins, Northern Territory and Queensland. Record 2024/37. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/149730</div>

  • Following the publication of Geoscience Australia record 2014/09: Petroleum geology inventory of Australia's offshore frontier basins by Totterdell et. al, (2014), the onshore petroleum section embarked upon a similar project for onshore Australian basins. The purpose of this project is to provide a thorough basis for whole of basin information to advise the Australia Government and other stakeholders, such as the petroleum industry, regarding the exploration status and prospectivity of onshore Australian basins. Eight onshore Australian basins have been selected for this volume and these include: the McArthur, South Nicholson, Georgina, Amadeus, Warburton, Wiso, Galilee and Cooper basins. This record provides a comprehensive whole of basin inventory of the geology, petroleum systems, exploration status and data coverage for these eight onshore Australian basins. It draws on precompetitive work programs by Geoscience Australia as well as publicly available exploration results and geoscience literature. Furthermore, the record provides an assessment of issues and unanswered questions and recommends future work directions to meet these unknowns.

  • A key challenge in exploring Australian onshore sedimentary basins is limited seismic data coverage. Consequently, well logs are often the main datasets that can be used to understand the subsurface geology. The primary aim of this study was to develop a methodology for visualising the three-dimensional (3D) tectonostratigraphic architecture of sedimentary basins using well data, which can then be used to quickly screen areas warranting more detailed studies of resource potential. This project has developed a workflow that generates 3D well correlations using sequence stratigraphic well tops to visualise the regional structural and stratigraphic architecture of the Amadeus, Canning, Officer and Georgina basins in the Centralian Superbasin. Thirteen Neoproterozoic‒Paleozoic supersequence tops were interpreted in 134 wells. Three-dimensional well correlations provide an effective regional visualisation of the tectonostratigraphic architecture across the main depocentres. This study redefines the Centralian Superbasin as encompassing all western, northern and central Australian basins that had episodically interconnected depositional systems driven by regional subsidence during one or more regional tectonic events between the Neoproterozoic and middle Carboniferous. The Centralian Superbasin began to form during Neoproterozoic extension, and underwent several phases of partial or complete disconnection and subsequent reconnection of depositional systems during various regional tectonic events before final separation of depocentres at the culmination of the Alice Springs Orogeny. Regional 3D correlation diagrams have been generated to show the spatial distribution of these supersequences, which can be used to visualise the distribution of stratigraphic elements associated with petroleum, mineral and groundwater systems. <b>Citation: </b>Bradshaw, B., Khider, K., MacFarlane, S., Rollet, N., Carr, L. and Henson, P., 2020. Tectonostratigraphic evolution of the Centralian Superbasin (Australia) revealed by three-dimensional well correlations. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.