GIS
Type of resources
Keywords
Publication year
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
No abstract available
-
No abstract available
-
Outcrop geology was obtained directly from the following 1:250 000 map sheets: Marble Bar, Nullagine, Port Hedland and Yarrie. This dataset consists of both raster and vector data. Raster data which is unsigned 8 bit integer, can be viewed in Arc/Info, ArcView, MapInfo, ERMapper, ERViewer and ArcExplorer. Raster data which is 4 byte real data, can only be viewed and manipulated with an image processing package such as ERMapper.
-
Sniffer Files The 'Sniffer' or Direct Hydrocarbon Detection (DHD) technique used to detect hydrocarbon seepage offshore involves towing a submerged tow-fish close to the seafloor and continuously pumping seawater into a geochemical laboratory on board where the hydrocarbons are extracted and measured by gas chromatography. The Direct Hydrocarbon Detection (DHD) method continuously analyses C1-C8 hydrocarbons within seawater. The method used on the RV Rig Seismic is as follows. Seawater is continuously delivered into the geochemical laboratory onboard the ship via a submersible fish (which is towed approximately 10 m above the seafloor). The seawater is degassed in a vacuum chamber and the resulting headspace gas is injected into three gas chromatographs, which sequentially sample the flowing gas stream and measure a variety of light hydrocarbons. Total hydrocarbons (THC) are measured every thirty seconds, light hydrocarbons (C1-C4) are measured every two minutes and C5 to C8 are measured every 8 minutes. Fluorometer and Aquatrack Fil In October 1998, the Australian Geological Survey Organisation (AGSO) carried out field trials of three commercially available towed fluorometers; Aquatracka (Chelsea Instruments), SAFIRE (WetLabs), FLF (WetLabs). These instruments were pre-selected on manufacturer specifications as potentially the most suitable, compared to other fluorometers currently on the market, for the detection of polycyclic aromatic hydrocarbons (PAH) present in crude oils seeping into the marine environment. The fluorometers were set with an excitation wavelength in the range 239 nm to 260 nm and fluorescence was monitored over the range 340 nm to 360 nm. SAFIRE is a multi-wavelength instrument, which enabled simultaneous use of several excitation and emission wavelengths. All three fluorometers were mounted on deck and seawater was pumped through them. The Aquatracka instrument analysed deep water pumped to the surface by the "Sniffer" submersible system.
-
Mapping of outcrop geology on Leonora 1:100 000 map sheet in the Eastern Goldfields, Western Australia, as part of the National Geoscience Mapping Accord (NGMA). Briefly, mapping consists of geological boundaries/units, faults, fractures, folds, veins, dykes, joints, linears, marker beds, trends, structural measurements, and mineral deposits.
-
The map addresses the distribution of Archaean rocks of the central Eastern Goldfields of Western Australia. Interpretation was undertaken at 1:250 000 scale for both Geoscience Australia aeromagnetic data (400m linespacing) and Fugro Airborne Surveys Pty. Ltd. data (200m linespacing). The Archaean rocks are subdivided into undivided gneiss-migmatite-granite (Agmg), banded gneiss (Agn), greenstone (Aa), and granite plutons (Ag). Where important relative differences in magnetisation are mapped, the geophysical map units include the suffixes _h (high), _m (medium), _l (low) and _r (remanent) for the level of magnetisation. Dykes, faults, and unassigned small intrusives are also mapped. The map is derived from a subset of a more extensive interpretation covering the exposed extent of the Yilgarn Craton.
-
This dataset provides the spatially continuous data of the seabed sand content (sediment fraction 63-2000 mm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.01 decimal degree resolution raster format. The dataset covers the Australian continental EEZ, including seabed surrounding Tasmania. It does not include areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands or Australia's marine jurisdiction off of the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This dataset supersedes previous predictions of sediment sand content for the Australian Margin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at national and regional scales. The dataset may not be appropriate for use at local scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
This folder contains the reports and supporting digital datasets from four geological studies published by SRK (later FrOGTech) consultants, between 2001 and 2007. Known as the OZ SEEBASE Compilation (Structurally Enhanced View of Economic Basement), the studies interpreted the three dimensional character of Australian sedimentary basins and their basement.
-
The dataset provides the spatially continuous data of the seabed gravel content (sediment fraction >2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.01 decimal degree resolution raster format. The dataset covers the Australian continental EEZ, including seabed surrounding Tasmania. It does not include areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands or Australia's marine jurisdiction off of the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This dataset supersedes previous predictions of sediment gravel content for the Australian Margin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at national and regional scales. The dataset may not be appropriate for use at local scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.