From 1 - 10 / 589
  • Package holding all available processed data and well completion reports relevant to the Petrel 2007Acreage Release in workstation format - Geoframe, Kingdom and Landmark.

  • The structural controls of gold mineralisation within the Bardoc tectonic zone, Eastern Goldfields province, Western Australia; implications for gold endowment in shear systems. Mineralium Deposita, 42(6), 583-600.

  • The 2002 report to the Council of Australian Governments (COAG) <i>Natural disasters in Australia: Reforming mitigation, relief and recovery arrangements</i> advocated a 'fundamental shift in focus towards cost-effective, evidence-based disaster mitigation'. The report stated that in Australia there was a 'lack of independent and comprehensive systematic natural disaster risk assessments, and natural disaster data and analysis'. One key solution proposed to address this gap in our knowledge is outlined in Reform Commitment 1 in the report: <i>Develop and implement a five-year national programme of systematic and rigorous disaster risk assessments</i>. This framework is designed to improve our collective knowledge about natural hazard risk in Australia to support emergency risk management and natural hazard mitigation. The natural hazards covered are those defined in the report to COAG: bushfire, earthquake, flood, storm, cyclone, storm surge, landslide, tsunami, meteorite strike and tornado. Many events have demonstrated that the importance of natural hazards does not lie simply in the generation and passage of events such as severe storms or floods, but in the wide-reaching and profound impacts that these events can have on communities. Risk 1 is defined as: A concept to describe the likelihood of harmful consequences arising from the interaction of hazards, communities and the environment. This framework focuses on risk assessment for sudden onset natural hazards to underpin natural hazard risk management and natural hazard mitigation. The framework does not focus on risk management or mitigation, although its outcomes support and benefit these. The framework covers the following risks arising from natural hazards: financial, socio-economic, casualty, political and environmental risk. Each of these risks contributes to the overall impacts of natural hazards on communities . This framework is aimed foremost at those who seek an improved evidence base for risk management of natural hazards, in all levels of government. The framework is also intended for risk assessment practitioners, researchers and information managers. The primary driver of the framework is the need to develop an improved evidence base for effective risk management decisions on natural hazards. Developing this improved evidence base will also deliver on COAG Reform Commitment 1. Other key drivers include: - Cooperative approaches across all levels of government to managing natural hazards; - A consistent approach to natural hazard risk assessment; - Risk management for cross-jurisdictional and catastrophic disasters; - The potential impacts of climate change from possible changes in the frequency or severity of weather related natural hazards; - Increasing exposure of populations to natural hazards through demographic change and increases in personal assets.

  • Re-examination of the Ordovician geology between Mandurama and Bigga in the Lachlan Orogen of central western New South Wales has produced new interpretations of the stratigraphy and structural geology. The Abercrombie beds have been previously inferred to comprise an Ordovician turbidite package with interbedded black shale bands. Although hampered by a paucity of fossil ages, new data suggest that the Ordovician geology of this region instead represents an imbricate stack of Lower Ordovician turbidites (Adaminaby Group) and Upper Ordovician black shales (Warbisco Shale). Structural data from the north of this region suggest that duplication occurred in a D1 event (with formation of broadly east-west to west-northwest-trending thrust slices or fold limbs) and was accompanied by formation of cleavage and isoclinal folds. Thrusting of the Adaminaby Group and Warbisco Shale over or under the Lower Ordovician Coombing Formation (southern part of the Molong volcanic belt) also occurred at this time. East-vergent imbrication and thrusting and formation of a regional near-meridional steeply west-dipping cleavage occurred in the D2 event, when D1 thrusts or folds were folded around overturned (east-vergent) D2 folds. These new data also suggest that there is a north-to-south gradient in the intensity of the D2 deformation, with D2 effects decreasing from south to north approaching the Lachlan Transverse Zone. Such a gradient mirrors similar but more subtle local changes from the north. Together, they imply that the Lachlan Transverse Zone was a major zone of weakness during north-south shortening that resulted in the formation of D1 structures but was relatively rigid in local areas during the regional D2 deformation that resulted from east-west shortening when it formed a major tear/accommodation zone. This D2 rigidity may be caused by strength imparted by the earlier emplacement of large (variably mineralised) intrusive/volcanic complexes along the transverse zone.

  • This folder contains the reports and supporting digital datasets from four geological studies published by SRK (later FrOGTech) consultants, between 2001 and 2007. Known as the OZ SEEBASE Compilation (Structurally Enhanced View of Economic Basement), the studies interpreted the three dimensional character of Australian sedimentary basins and their basement.

  • A symposium was held at the University of Wales, Swansea in July 2007 to honour the career and achievements of Professor Michael Collins. The symposium was organised by Michael's former postgraduate students as a tribute to his contributions over the past 30 years as a scientist, teacher, mentor and friend. About 30 of the 50+ Ph.D. and M.Sc. students that Michael has supervised over the years were fortunate to attend the symposium, which offered the opportunity for all of us to learn about the many different subjects and projects that Michael supervised and to renew our friendships with the Collins family, as well as the extended, academic Collins 'family'.

  • Gold deposits of the Bardoc tectonic zone; a distinct style of orogenic gold in the Archaean Eastern Goldfields Province, Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 54, 783-800.

  • Geoscience Australia Marine Survey 302: Final Survey Report. by Fugro Robertson Inc, Nov. 2006 - Jan. 2007.

  • Upgrade for software package for geochemical modelling released in 1999. Available from OEMD on request to Evgeniy Bastrakov (a password is set for a particular user).

  • Package holding all available processed data and well completion reports relevant to the Browse 2007Acreage Release in workstation format - Geoframe, Kingdom and Landmark.