From 1 - 10 / 1027
  • This map shows the boundary of the Maritime Security Zones for each port for the purpose of the Maritime Transport Office Security Act 2003. 1 Sheet (Colour) March 2010 Not for sale or public distribution Contact Manager LOSAMBA project, PMD

  • The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey provides pre-competitive data for enhancing uranium and other mineral exploration. Flight line spacing was 1666 m and 5000 m covering an area of 74,000 km2 (roughly the size of Tasmania) which hosts several uranium deposits, including the Ranger Uranium Mine, Rum jungle, Ranger and Nabarlek. The region is also prospective for metals including copper, lead, zinc, gold, tin, rare earths, tantalum, tungsten, molybdenum and nickel. The Pine Creek AEM survey comprises three areas: Kombolgie to the east of Kakadu National Park; Woolner Granite near Darwin; and, Rum Jungle to the west of Kakadu National Park. Collaboration with the National Water Commission and eight private infill companies brought an additional investment of approximately $1 m into the survey, with follow-up exploration equal to or exceeding this amount. The Woolner Granite and Rum Jungle survey area data were acquired using the TEMPEST fixed wing AEM system. The acquisition and processing were carried out by Fugro Airborne Surveys Pty. Ltd., under contract to GA. The Woolner Granite and Rum Jungle surveys were flown between August 2008 and May 2009 and the data were publicly released by GA in July and September 2009 respectively. In the Kombolgie survey area, the data were acquired a by Geotech Airborne Pty. Ltd. using the VTEM helicopter AEM system. The survey was flown between August and November of 2008, and additional calibration flights relating to the survey were flown in April 2009. The Kombolgie data were publicly released by GA in December 2009.

  • Geoscience Australia is supporting the exploration and development of offshore oil and gas resources and establishment of Australia's national representative system of marine protected areas through provision of spatial information about the physical and biological character of the seabed. Central to this approach is prediction of Australia's seabed biodiversity from spatially continuous data of physical seabed properties. However, information for these properties is usually collected at sparsely-distributed discrete locations, particularly in the deep ocean. Thus, methods for generating spatially continuous information from point samples become essential tools. Such methods are, however, often data- or even variable- specific and it is difficult to select an appropriate method for any given dataset. Improving the accuracy of these physical data for biodiversity prediction, by searching for the most robust spatial interpolation methods to predict physical seabed properties, is essential to better inform resource management practises. In this regard, we conducted a simulation experiment to compare the performance of statistical and mathematical methods for spatial interpolation using samples of seabed mud content across the Australian margin. Five factors that affect the accuracy of spatial interpolation were considered: 1) region; 2) statistical method; 3) sample density; 4) searching neighbourhood; and 5) sample stratification by geomorphic provinces. Bathymetry, distance-to-coast and slope were used as secondary variables. In this study, we only report the results of the comparison of 14 methods (37 sub-methods) using samples of seabed mud content with five levels of sample density across the southwest Australian margin. The results of the simulation experiment can be applied to spatial data modelling of various physical parameters in different disciplines and have application to a variety of resource management applications for Australia's marine region.

  • The Garnaut Climate Change Review commissioned by Australia's State and Territory Governments examined the impacts of, and possible policy responses to, climate change on the Australian economy. This presentation discussed the methodology developed for the Review by Geoscience Australia and the outputs which provided an assessment of the impact of tropical cyclone (TC) hazard on communities in northern Australia. The study utilized predicted changes in the maximum potential intensity (MPI) to define changes in the wind hazard and storm surge potential. The MPI sets a thermodynamic, theoretical upper limit for the distribution of TC intensities for a given vertical temperature and humidity profile and a given location. Associated storm surge impacts were developed using a simple relationship between TC intensity and storm surge height and adopting the IPCC fourth assessment global mid-point sea-level rise predictions. We considered the impact on the residential building stock of severe wind and storm surge hazards associated with a number of IPCC climate change scenarios. Changes in residential building stock, for over 500 coastal statistical local areas (SLA's) from Southeast Queensland anticlockwise to Perth, were forecast using Australian Bureau of Statistics population projections through to 2100. A Probable Maximum Loss (PML) curve for each study region was obtained by considering the return-period hazard over the range from 50 to 5000 years. The average annual cost to the region due to tropical cyclones across this wide time period (5000 years), often referred to as the 'annualised loss', was evaluated for each SLA. Expressing the annualised loss as a percentage of total reconstruction demonstrates the intensity of the risk to a particular community, which is not so evident in simple dollar loss figures.

  • An assumption of probabilistic seismic hazard assessment is that within each source zone the random earthquakes of the past are considered a good predictor of future seismicity. Random earthquakes suggest a Poisson process. If the source zone does not follow a Poisson process then the resulting PSHA might not be valid. The tectonics of a region will effect its spatial distributions. Earthquakes occurring on a single fault, or uniformly distributed, or clustered or random will each have a distinctive spatial distribution. Here we describe a method for both identifying and delineating earthquake clusters and then characterising them. We divide the region into N cells and by counting the number of earthquakes in each cell we obtain a distribution of the number of cells versus the number of earthquakes per cell. This can then be compared to the theoretical Poisson distribution. Areas which deviate from the theoretical Poisson distribution, can then be delineated. This suggests a statistically robust method for determining source zones. Preliminary results suggest that areas of clustering (eg. SWSZ) can also be modelled as a Poisson process which differs from the larger regional Poisson process. The effect of aftershocks and swarms are also investigated.

  • Data gathered in the field during the sample collection phase of the National Geochemical Survey of Australia (NGSA) has been used to compile the Preliminary Soil pH map of Australia. The map, which was completed in late 2009, offers a first-order estimate of where acid or alkaline soil conditions are likely to be expected. It provides fundamental datasets that can be used for mineral exploration and resource potential evaluation, environmental monitoring, landuse policy development, and geomedical studies into the health of humans, animals and plants.

  • This map shows the boundary of the security regulated port for the purpose of Maritime Transport & Office Security Act 2003 1 Sheet (Colour) February 2010 Not for sale or public distribution Contact Manager LOSAMBA project, PMD

  • A growing need to manage marine biodiversity at local, regional and global scales cannot be met by applying the limited existing biological data sets. Abiotic surrogacy is increasingly valuable in filling the gaps in our knowledge of biodiversity hotspots, habitats needed by endangered or commercially valuable species and systems or processes important to the sustained provision of ecosystem services. This review examines the utility of abiotic surrogates across spatial scales with particular regard to how abiotic variables are tied to processes which affect biodiversity and how easily those variables can be measured at scales relevant to resource management decisions.

  • The global ocean absorbs 30% of anthropogenic CO2 emissions each year, which changes the seawater chemistry. The absorbed CO2 lowers the pH of seawater and thus causes ocean acidification. The pH of the global ocean has decreased by approximately 0.1 pH units since the Industrial Revolution, decreasing the concentration of carbonate ions. This has been shown to reduce the rate of biological carbonate production and to increase the solubility of carbonate minerals. As more CO2 is emitted and absorbed by the oceans, it is expected that there will be continuing reduction in carbonate production coupled with dissolution of carbonate sediments. This study was undertaken as part of a program to collect baseline data from Australia's seabed environments and to assess the likely impacts of ocean acidification on continental shelf sediments. Over 250 samples from four continental shelf areas of northern Australia (Capricorn Reef, Great Barrier Reef Lagoon, Torres Strait, Joseph Bonaparte Gulf) were analysed to characterise the surface sediment mineral and geochemical composition. Of particular importance was the quantification of carbonate minerals (calcite, aragonite, high-magnesium calcite) and the magnesium content in high-magnesium calcite. The latter determines the solubility of high-magnesium calcite, which is most soluble of all common carbonate minerals. The thermodynamic stability of carbonate minerals as referred to the state of saturation was calculated using the current and predicted equatorial ocean water composition [1]. Northern Australian continental shelf sediments are largely dominated by carbonate. High-magnesium calcite had the highest abundance of all carbonate minerals followed by aragonite in all areas. The average mol% MgCO3 in high-magnesium calcite varied from 13.6 to 15.5 mol% for the different areas, which is in agreement with the global average magnesium concentration in high-magnesium calcite in tropical and subtropical regions [2].

  • Magnetotelluric (MT) data have been acquired in 2008 and 2009 at 40 broadband (0:01 s to 500 s) and 12 long-period (10 s to 10 000 s) sites along the east-west deep seismic reflection transect of northern Eyre Peninsula, South Australia. The MT survey is a joint project between the University of Adelaide and Geoscience Australia and is funded by the Australian Government as part of the Onshore Energy Security Program. Long-period sites are spaced 20 km apart and broadband sites infill this spacing to 10 km with also some 5 km spacing. This ensures sufficient coverage to map the upper crustal to upper mantle structures beneath northern Eyre Peninsula.