From 1 - 10 / 1200
  • This map is part of a series which comprises 50 maps which covers the whole of Australia at a scale of 1:1 000 000 (1cm on a map represents 10km on the ground). Each standard map covers an area of 6 degrees longitude by 4 degrees latitude or about 590 kilometres east to west and about 440 kilometres from north to south. These maps depict natural and constructed features including transport infrastructure (roads, railway airports), hydrography, contours, hypsometric and bathymetric layers, localities and some administrative boundaries, making this a useful general reference map.

  • This study brings together a wide range of datasets to provide a comprehensive assessment of the Pandurra Formation sedimentology and geochemistry in 3D. Sedimentology and geochemistry datasets generated this study are combined with pre-existing data to generate a 3D interpretation of the Pandurra Formation and improve understanding of how the Pandurra formation as we see it to today was deposited and subsequently post-depositionally mineralised.

  • OzCoasts is a web-based database and information system managed by Geoscience Australia that draws together a diverse range of data and information on Australia's coasts and estuaries. Maps, images, reports and data can be downloaded and there are tools to assist with coastal science, monitoring, management and policy. A Tropical Rivers module is the newest major feature of the website and was developed in partnership with the Griffith University node of the Tropical Rivers and Coastal Knowledge (TRaCK) consortium and Boab Interactive. The module contains the Australian Riverine Landscape Classifier (AURICL) and provides links to the TRaCK Digital Atlas. AURICL will assist researchers and policy makers make better decisions about riverine landscapes. It is a dynamic and flexible system (i.e. can be updated as new data layers become available) for classifying and comparing tropical catchments and their rivers based on the similarity, or dissimilarity, of a wide range of parameters. Importantly, AURICL provides researchers with: (i) data-sets to link stream segments from the National Catchment Boundaries database to estuary point locations for north Australia; (ii) a collection of riverine attribute data that sum their upstream contributions to an estuary; and (iii) an amalgamation of inputs for estuaries with multiple contributing streams. To date, researchers have only had access to very general data on the catchments that feed estuaries (e.g. catchment areas). The Mangroves and Coastal Saltmarsh of Victoria: Distribution, Condition, Threats and Management report is new to the Habitat Mapping module, and constitutes the first State-wide assessment of Victoria's coastal wetlands. The 514 page report, led by Prof. Paul Boon (Victoria University), examines the diversity of wetland types and plant communities along the Victorian coast and provides analysis of the ecological condition and major threats to coastal wetlands in Victoria. OzCoasts will also soon deliver the Coastal Eutrophication Risk Assessment Tool (CERAT) for the NSW Office of Environment and Heritage. CERAT will help identify and prioritise land use planning decisions to protect and preserve the health of NSW estuaries. A partnership between OzCoasts and the coastal facility of the TERN (Terrestrial Ecosystem Research Network) is also currently under negotiation.

  • In this study, 3D mapping using airborne electromagnetics (AEM) was used to site a monitoring bore network in the Darling River floodplain corridor. Pressure loggers were installed in over 40 bores to monitor groundwater levels primarily in the shallow unconfined Coonambidgal Formation aquifer, deeper (semi)confined Calivil Formation and confined Renmark Group aquifers. In 2010-11, the network provided the opportunity to monitor the groundwater response to flooding of the Darling River and the replenishment of the Menindee Lakes storages, following a period of prolonged drought. In this event, the Darling River at Menindee (Weir 32) rose from 1.59m in October 2010 and peaked at 7.16m in March 2011. A synchronous rise in groundwater levels varying between 0.5-3.4m was observed in the shallow unconfined aquifer near the river. Shallow groundwater levels also declined following the flood peak. Near-river groundwater levels in the Calivil aquifer rose between 0.2-1.3m and also by 4.0 m at a site near Lake Menindee. The latter confirms lake leakage into the aquifer at this particular site, as previously inferred by the AEM data. There was also a pressure response of 0.1-0.9m evident in certain Renmark aquifer bores near the river. The monitoring confirms the importance of episodic flood events to the recharge of the alluvial aquifers, as supported by groundwater chemistry and stable isotope data. Although some of the confined aquifer response may relate to transient hydraulic loading associated with the flood, the inference is that in places there is a degree of hydraulic connectivity between the aquifers.

  • My First Record

  • 2012 Acreage Release information pack

  • Geomorphic landscape features and associated surface materials are fundamental to groundwater recharge processes as they form the first layer through which surface water passes before it becomes groundwater. Different surface materials exhibit different water-holding capacity and hence permeability characteristics. In the Broken Hill Managed Aquifer Recharge project, surface-materials mapping in conjunction with geomorphic mapping, has assisted hydrogeological investigations, including recharge predictions, salinity hazard and the identification of potential infiltration basins. Prior to landform identification, LiDAR DEM data was levelled using trend surfaces to eliminate regional slope (~20m). As a consequence of this, an ArcGIS interactive contour tool could be used to identify specific breaks in elevation associated with landform features. Multivariate image analysis of elevation, high resolution SPOT and Landsat-derived wetness further enhanced the contrast between geomorphic elements to confirm mapping boundaries. While specific landforms can be characterised by particular surface materials, these sediments can vary within a single geomorphic feature. Consequently, SPOT multispectral satellite imagery was used to identify surface materials using principal component analysis and unsupervised classification. This approach generated 20 classes; each assigned a preliminary cover/landform attribute using SPOT imagery. Field data (surface and borehole sample, and observations at shallow pits) were used to refine the classification approach. Interactive mapping using a de-trended DEM provided a rapid, effective and accurate alternative to time consuming manual landform digitisation. The combination of these two new products - surface-materials and geomorphic maps - has assisted in the identification of potential recharge sites and naturally occurring infiltration sites.

  • Seawater intrusion (SWI) is a problem globally due to changes in catchment water balances and rising sea levels. The northern coastline of Australia is an area of incipient SWI hazard; however, there is limited understanding of the characteristics of SWI. This study undertook a regional TEMPEST AEM survey of the Darwin coastal plains over the Koolpinyah Dolostone (KD) aquifer, to inform understanding of SWI in this important urban and peri-urban water source. Calibration and validation of AEM data involved sonic and rotary mud drilling, borehole geophysical and geological logging, and laboratory analysis of lithologies, pore fluids and groundwater samples. The AEM data provide greater spatial detail of critical elements of the hydrostratigraphy, and map a complex SWI interface in 3D. A potential SWI hazard to the main producing aquifer has been identified, with SWI ingress through preferential flow paths mapped along structural corridors. There is also extensive leakage of saline groundwater beneath the tidal Adelaide and Mary River floodplains. The existing regional hydrogeological model requires major revision to incorporate the significant weathered zones and salt stores, more restricted extent of dolostone in the aquifer,, and preferential recharge zones and groundwater flow paths to the KD aquifer identified through this study. Assessment of SWI risk to the groundwater resource requires additional hydrodynamic data targeted using the AEM data, and incorporation of results within a predictive groundwater model. The study demonstrates the value of regional, AEM surveys in understanding SWI proceses in karstic aquifers, particularly in data-poor, inaccessible or environmentally sensitive areas.

  • Map showing Australia's Maritime Jurisdiction in the Torres Strait. This map in an A4 simplified version of the Torres Strait map which is part of the 27 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (Refer to GeoCat 73983 for original A4 map). Depicting various maritime zones. No background image on this map A4 sized JPG (stored within project - initially produced for Border Protection - GAMSA publication)

  • Traditional aquifer tests are an expensive and time-consuming method for obtaining hydraulic information. Furthermore, in many environments, it is becoming increasingly difficult to obtain environmental clearances to dispose produced waters. In this study, the Nuclear Magnetic Resonance (NMR) method was evaluated to provide data on hydraulic conductivities (K) and transmissivities (T) of sediments within the Darling River Floodplain, Australia. NMR data were acquired every 0.5 m using a slim-hole logging system in 26 sonic cored wells to a depth of ~70 m. KNMR can be estimated from the NMR measurements using the Schlumberger-Doll Research Equation: KNMR = C x ?2 x T2ML2, where is the NMR effective porosity, T2ML is the logarithmic mean of the T2 distributions, and C is a formation factor related to tortuosity. Prior to the calculation of the KNMR, the NMR data were classified into five hydraulic classes ranging from clay to gravely-coarse sand using the core, geophysical, mineralogical, and hyperspectral logs. In selected zones aquifer tests were conducted to provide constraints on the K and T of the formations. Least-squares inversion was used to solve for the optimum C values for each of the hydraulic classes versus the aquifer test obtained T. Comparisons between laboratory permeameter measurements and KNMR indicated correspondence within two orders of magnitude. The borehole NMR method provides a rapid way of estimating the near continuous variations in K through a sedimentary sequence, while also providing useful estimates of K at a scale not achievable using traditional aquifer testing methods.