From 1 - 10 / 88
  • This collection contains all national level bathymetry grids held by Geoscience Australia (GA) dating back to survey data obtained since 1993. <b>Value: </b>Bathymetry data is used for a wide range of marine applications including: navigation, environmental assessment, jurisdictional boundaries, resource exploration. <b>Scope: </b>Data holdings lying within the offshore area of Australia, including international waters. <b>To access the AusSeaBed Marine Data Portal</b> use the following link: <a href="https://portal.ga.gov.au/persona/marine#/">https://portal.ga.gov.au/persona/marine#/</a>

  • Collection of Geoscience Australia's high-resolution elevation surveys collected using Light Detection and Ranging (LiDAR) and other instrument systems. <b>Value: </b>Describes Australia's landforms and seabed is crucial for addressing issues relating to the impacts of climate change, disaster management, water security, environmental management, urban planning and infrastructure design. <b>Scope: </b>Selected areas of interest around Australia.

  • Mapped and projected extents of geology and geologic features in Australia, including: surface geology, regolith geology, solid geology, chronostratigraphic surfaces, and province boundaries. The database includes igneous, sedimentary and structural characteristics, age limits, parent and constituent units, relations to surrounding provinces, and mineral and petroleum resources. based on field observations interpretations of geophysics and borehole data. <b>Value:</b> Data used for understanding surface and near surface geology. The data can be used for a variety of purposes, including resource exploration, land use management, and environmental assessment. <b>Scope:</b> Australia and Australian Antarctic Territory

  • This collection includes Global Navigation Satellite System (GNSS) observations from long-term continuous or semi continuous reference stations at multiple locations across Australia and its external territories, including the Australian Antarctic Territory. <b>Value:</b> The datasets within this collection are provided on an openly accessible basis to support a myriad of scientific and societal positioning applications in Australia. These include the development and maintenance of the Australian Geospatial Reference System (AGRS); the densification of the International Terrestrial Reference Frame (ITRF); crustal deformation studies; atmospheric studies; and the delivery of precise positioning services to Australian businesses. <b>Scope: </b> Data from reference stations across Australia and its external territories, including the Australian Antarctica Territory. <b>Access: </b> To access the datasets and query station information visit the <a href="https://gnss.ga.gov.au./">Global Navigation Satellite System Data Centre</a>

  • Geoscience Australia is the custodian of the most comprehensive publicly available Australian airborne magnetic, gamma-ray, seismic, electromagnetic and gravity data sets. The airborne geophysics data set contains approximately 34 million line kilometres of data, which, at current prices, would cost approximately $197 million to acquire. The gravity data set contains more than 1.57 million reliable onshore stations gathered during more than 1800 surveys. The collection also includes a large number of seismic surveys from Australia's offshore basins. The onshore component of this data set was previously approved for RDSI for 8 TB. This proposal extends the collection to 150TB. The data types and access methods for the Offshore and Onshore data are identical Certain holdings are additionally hosted at the NCI (see downloads)

  • The Australian National Exposure Information System (NEXIS) collates the best publicly-available information, statistics, spatial and survey data into comprehensive and nationally-consistent exposure information datasets. Where data is limited, models are used to apply statistics based on similar areas. Exposure Information products are created at the national, state or local level to understand the elements at risk during an event or as a key input for analysis in risk assessments. <b>Value: </b>NEXIS products are not intended for operational purposes at the building or individual feature level. Its strength is to provide consistent aggregated exposure information for individual event footprints or at standard community, local, state and national geographies such as the Australian Bureau of Statistics (ABS) Statistical Areas (SA) or Local Government Areas (LGA). <b>Scope: </b>National detailed exposure information of the number of people, dwellings, other buildings and structures, businesses, agricultural and environmental assets. Further information can be found at the following URL: https://www.ga.gov.au/scientific-topics/community-safety/risk-and-impact/nexis

  • Magnetotellurics (MT) is a passive geophysical method which uses natural time variations of the Earth's magnetic and electric fields to measure the electrical resistivity of the sub-surface. Electrical resistivity is a bulk property of a volume of Earth material and is associated with factors such as rock composition, porosity and permeability as well as temperature and pressure. The Magnetotelurics (MT) Data Collection includes datasets from The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) and regional-scale MT surveys across the Australian continent. These data were collected by Geoscience Australia in collaboration with the State and Territory Geological Surveys and other partners. <b>Value: </b>Magnetotelluric data to expand the geoscientific understanding of the earth's lithospheric structure and provide new insights into Australia's onshore energy and mineral potential. <b>Scope: </b>AusLAMP is being conducted over multiple years to create a national MT dataset and map lithospheric structure of the Australian continent. MT data have also been acquired for mapping crustal structure and resource potential at regional scale. These data provide valuable information for multi-disciplinary interpretations. To view the magnetotellurics data via the Geoscience Australia internet page click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/regional-mt-program">https://www.ga.gov.au/about/projects/resources/regional-mt-program</a> For further information about the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/auslamp">https://www.ga.gov.au/about/projects/resources/auslamp</a>

  • This the top-level collection record for all of Geoscience Australia's public vocabularies. The vocabularies are all formulated using the SKOS (Simple Knowledge Organization System) information model and delivered both as machine-readable Resource Description Framework (RDF) data and also as HTML web pages. Each vocabulary is delivered individually as RDF & HTML data and all vocabularies are linked to from both GA's vocabularies index static web page and also from the Australian National Data Service (ANDS)'s Research Vocabularies Australia (RVA) portal. All vocabularies, collections of concepts within vocabularies and individual concepts are identified with URI persistent identifiers of the form: http://pid.geoscience.gov.au/def/voc/ga/{VOCABULARY-KEY}/{COLLECTION-OR-CONCEPT-NAME} This means that you can access all the information about a vocabulary, a collection or a concept directly by entering that URI into your web browser.

  • Radiogenic isotopes decay at known rates and can be used to interpret ages for minerals, rocks and geologic processes. Different isotopic systems provide information related to different time periods and geologic processes, systems include: U-Pb and Ar/Ar, Sm-Nd, Pb-Pb, Lu-Hf, Rb-Sr and Re-Os isotopes. The GEOCHRON database stores full analytical U-Pb age data from Geoscience Australia's (GA) Sensitive High Resolution Ion Micro-Probe (SHRIMP) program. The ISOTOPE database is designed to expand GA's ability to deliver isotopic datasets, and stores compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. OZCHRON is a depreciated predecessor to GEOCHRON and ISOTOPE, the information once available in OZCHRON is in the process of migration to the two current databases. The ISOTOPE compilation includes sample and bibliographic links through the A, FGDM, and GEOREF databases. The data structure currently supports summary ages (e.g., U-Pb and Ar/Ar) through the INTERPRETED_AGES tables, as well as extended system-specific tables for Sm-Nd, Pb-Pb, Lu-Hf and O- isotopes. The data structure is designed to be extensible to adapt to evolving requirements for the storage of isotopic data. ISOTOPE and the data holdings were initially developed as part of the Exploring for the Future (EFTF) program - particularly to support the delivery of an Isotopic Atlas of Australia. During development of ISOTOPE, some key considerations in compiling and storing diverse, multi-purpose isotopic datasets were developed: 1) Improved sample characterisation and bibliographic links. Often, the usefulness of an isotopic dataset is limited by the metadata available for the parent sample. Better harvesting of fundamental sample data (and better integration with related national datasets such as Australian Geological Provinces and the Australian Stratigraphic Units Database) simplifies the process of filtering an isotopic data compilation using spatial, geological and bibliographic criteria, as well as facilitating 'audits' targeting missing isotopic data. 2) Generalised, extensible structures for isotopic data. The need for system-specific tables for isotopic analyses does not preclude the development of generalised data-structures that reflect universal relationships. GA has modelled relational tables linking system-specific Sessions, Analyses, and interpreted data-Groups, which has proven adequate for all of the Isotopic Atlas layers developed thus far. 3) Dual delivery of 'derived' isotopic data. In some systems, it is critical to capture the published data (i.e. isotopic measurements and derived values, as presented by the original author) and generate an additional set of derived values from the same measurements, calculated using a single set of reference parameters (e.g. decay constant, depleted-mantle values, etc.) that permit 'normalised' portrayal of the data compilation-wide. 4) Flexibility in data delivery mode. In radiogenic isotope geochronology (e.g. U-Pb, Ar-Ar), careful compilation and attribution of 'interpreted ages' can meet the needs of much of the user-base, even without an explicit link to the constituent analyses. In contrast, isotope geochemistry (especially microbeam-based methods such as Lu-Hf via laser ablation) is usually focused on the individual measurements, without which interpreted 'sample-averages' have limited value. Data delivery should reflect key differences of this kind. <b>Value: </b>Used to provide ages and isotope geochemistry data for minerals, rocks and geologic processes. <b>Scope: </b>Australian jurisdictions and international collaborative programs involving Geoscience Australia

  • This collection includes information regarding the location and design of Australian onshore and offshore boreholes, where boreholes are defined as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally. In this context, boreholes include: Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. <b>Value: </b> Information related to the boreholes described in this collection have the potential to support geological investigations and assessment of a variety of resources. <b>Scope: </b>Selected open file boreholes Australian boreholes located onshore and offshore