From 1 - 10 / 121
  • A postcard providing an overview of the marine ecology programme at Geoscience Australia

  • Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of representative seabed habitats , versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type on the shelf of the Flinders reserve, using both survey approaches, based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. We then consider the implications for future inventory of benthic habitats in shelf environments in the context of monitoring extensive offshore marine reserves.

  • Surface Bidirectional Reflectance Distribution Function (BRDF) correction is important for time series based analysis, such as dynamic landcover mapping and monitoring climate change etc. It is thus important to understand characteristics of BRDF and its variation under different cover and climate conditions and its seasonal and annual variation. Many studies suggested that BRDF is related to the characteristics of landcover types, vegetation structure (height and cover) and climate patterns. In this study, 10 years of MODIS BRDF data sets (MOD43A1) from 2001 to 2011 are used to conduct the analysis using landcover data in Australia derived in the same period. The study found that BRDF spectral shape is strongly correlated with the Normalized Difference Vegetation Index (NDVI), but BRDF shape varies significantly between landcover classes, vegetation structure and climate regions. Intra-annual variation of BRDF spectral shape is stronger than the inter-annual variation and seasonal patterns of spectral BRDF shape are different from those of NDVI.

  • Wind multipliers are factors that transform regional wind speeds into local wind speeds, accounting for the local effects which include topographical, terrain and shielding influences. Wind multipliers have been successfully utilized in various wind related activities such as wind hazard assessment (engineering building code applications), event-based wind impact assessments (tropical cyclones), and also national scale wind risk assessment. The work of McArthur in developing the Forest Fire Danger Index (FFDI: Luke and McArthur, 1978) indicates that the contribution of wind speed to the FFDI is about 45% of the magnitude, indicating the importance of determining an accurate local wind speed in bushfire hazard and spread calculations. For bushfire spread modeling, local site variation (@ 100 metre and also 25 metre horizontal resolution) have been considered through the use of wind multipliers, and this has resulted in a significant difference to the currently utilized regional '10 metre height' wind speed (and further to the impact analysis). A series of wind multipliers have been developed for three historic bushfire case study areas; the 2009 Victorian fires (Kilmore fire), the 2005 Wangary fire (Eyre Peninsula), and the 2001 Warragamba - Mt. Hall fire (Western Sydney). This paper describes the development of wind multiplier computation methodology and the application of wind multipliers to bushfire hazard and impact analysis. The efficacy of using wind multipliers within a bushfire spread hazard model is evaluated by considering case study comparisons of fire extent, shape and impact against post-disaster impact assessments. The analysis has determined that it is important to consider wind multipliers for local wind speed determination in order to achieve reliable fire spread and impact results. From AMSA 2013 conference

  • This report provides background information about the Ginninderra controlled release Experiment 2 including a description of the environmental and weather conditions during the experiment, the groundwater levels and a brief description of all the monitoring techniques that were trialled during the experiment. Release of CO2 began 26 October 2012 at 2:25 PM and stopped 21 December 2012 at 1:30 PM. The total CO2 release rate during Experiment 2 was 218 kg/d CO2. The aim of the second Ginninderra controlled release was to artificially simulate the leakage of CO2 along a line source, to represent leakage along a fault. Multiple methods and techniques were then trialled in order to assess their abilities to: - detect that a leak was present - pinpoint the location of the leak - identify the strength of the leak - monitor how the CO2 behaves in the sub-surface - assess the effects it may have on plant health Several monitoring and assessment techniques were trialled for their effectiveness to quantify and qualify the CO2 that was release. This experiment had a focus on plant health indicators to assess the aims listed above, in order to evaluate the effectiveness of monitoring plant health and the use of geophysical methods to identify that a CO2 leak may be present. The methods are described in this report and include: - soil gas - airborne hyperspectral surveys - plant health (PhenoMobile) - soil CO2 flux - electromagnetic (EM-31) - electromagnetic (EM-38) - ground penetrating radar (GPR) This report is a reference guide to describe the Ginninderra Experiment 2 details. Only methods are described in this report with the results of the study published in conference papers and future journal articles.

  • Poster for IAH 2013 A major concern for regulators and the public with geological storage of CO2 is the potential for the migration of CO2 via a leaky fault or well into potable groundwater supplies. Given sufficient CO2, an immediate effect on groundwater would be a decrease in pH which could lead to accelerated weathering, an increase in alkalinity and the release of major and minor ions. Laboratory and core studies have demonstrated that on contact with CO2 heavy metals can be released under low pH and high CO2 conditions (particularly Pd, Ni and Cr). There is also a concern that trace organic contaminants could be mobilised due to the high solubility of many organics in supercritical CO2. These scenarios potentially occur in a high CO2 leakage event, therefore detection of a small leak although barely perceptible could provide an important early warning for a subsequent and more substantial impact.

  • The Collaborative Australian Protected Areas Database (CAPAD) 2012 provides both spatial and text information about government, Indigenous and privately protected areas for continental and marine Australia. State and Territory conservation agencies supplied data, current to 31 December 2012, to Australian Government Department of the Environment.

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia undertook a CO2 storage assessment of the Vlaming Sub-basin. The Vlaming Sub-basin a Mesozoic depocentre within the offshore southern Perth Basin located about 30 km west of Perth, Western Australia. The main depocentres formed during the Middle Jurassic to Early Cretaceous extension. The post-rift succession comprises up to 1500 m of a complex fluvio-deltaic, shelfal and submarine fan system. Close proximity of the Vlaming Sub-basin to industrial sources of CO2 emissions in the Perth area drives the search for storage solutions. The Early Cretaceous Gage Sandstone was previously identified as a suitable reservoir for the long term geological storage of CO2 with the South Perth Shale acting as a regional seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. The study provides a more detailed characterisation of the post Valanginian Break-up reservoir - seal pair by conducting a sequence stratigraphic and palaeogeographic assessment of the SP Supersequence. It is based on an integrated sequence stratigraphic analysis of 19 wells and 10, 000 line kilometres of 2D reflection seismic data, and the assessment of new and revised biostratigraphic data, digital well logs and lithological interpretations of cuttings and core samples. Palaeogeographies were reconstructed by mapping higher-order prograding packages and establishing changes in sea level and sediment supply to portray the development of the delta system. The SP Supersequence incorporates two major deltaic systems operating from the north and south of the sub-basin which were deposited in a restricted marine environment. Prograding clinoforms are clearly imaged on regional 2D seismic lines. The deltaic succession incorporates submarine fan, pro-delta, delta-front to shelfal, deltaic shallow marine and fluvio-deltaic sediments. These were identified using seismic stratigraphic techniques and confirmed with well ties where available. The break of toe slope was particularly important in delineating the transition between silty slope sediments and fine-grained pro-delta shales which provide the seal for the Gage submarine fan complex. As the primary reservoir target, the Gage lowstand fan was investigated further by conducting seismic faces mapping to characterise seismic reflection continuity and amplitude variations. The suitability of this method was confirmed by obtaining comparable results based on the analysis of relative acoustic impedance of the seismic data. The Gage reservoir forms part of a sand-rich submarine fan system and was sub-divided into three units. It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain and slump deposits adjacent to the palaeotopographic highs. Directions of sediment supply are complex. Initially, the major sediment contributions are from a northern and southern canyon adjacent to the Badaminna Fault Zone. These coalesce in the inner middle fan and move westward onto the plain producing the outer middle fan. As time progresses sediment supply from the east becomes more significant. Although much of the submarine fan complex is not penetrated by wells, the inner fan is interpreted to contain stacked channelized high energy turbidity currents and debris flows that would provide the most suitable reservoir target due to good vertical and lateral sand connectivity. The middle outer fan deposits are predicted to contain finer-grained material hence would have poorer lateral and vertical communication.

  • As a participating organisation in the Global Mapping Project, and following discussions held at the 22nd meeting of the International Steering Committee for Global Mapping (ISCGM), the Secretariat of the ISCGM has requested the assistance of Geoscience Australia in the validation of intermediate products of global land cover, the Global Land Cover by National Mapping Organisation (GLCNMO) version 3. The request sent to Geoscience Australia involves the use of existing maps and other materials, based on expertise and knowledge to report the validation of the GLCNMO version 3 datasets.

  • This resource contains sediment data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). Seabed sediment samples were collected from four survey areas by either a Smith McIntyre grab or box corer at 62 stations, divided between Area 1 (n=22), Area 2 (n=17), Area 3 (n=21) and Area 4 (n=2). The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38 (Nichol et al. 2013).