From 1 - 10 / 215
  • Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government¿s Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government¿s research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises total oxygen uptake and total carbon fluxes from core incubation experiments. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia ¿ post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921

  • This product is for in-house use only. It is a back up of a hard drive from the former Seabed Mapping and Characterisation section and contains working files from a variety of marine surveys and other projects dating from 2009 and before. Files were copied exactly as they appeared on the external Seagate hard drive.

  • As part of Geoscience Australia's commitment towards the National Environmental Programme's Marine Biodiversity Hub, we have developed a fully four-dimensional (3D x time) Lagrangian biophysical dispersal model to simulate the movement of marine larvae over large, topographically complex areas. The model operates by fusing the results of data-assimilative oceanographic models (e.g. BLUELink, HYCOM, ROMS) with individual-based particle behaviour. The model uses parallel processing on Australia's national supercomputer to handle large numbers of simulated larvae (on the order of several billion), and saves positional information as points within a relational database management system (RDBMS). The model was used to study Australia's northwest marine region, with specific attention given to connectivity patterns among Australia's north-western Commonwealth Marine Reserves and Key Ecological Features (KEFs). These KEFs include carbonate terraces, banks and reefs on the shelf that support diverse benthic assemblages of sponges and corals, and canyons that extend from the shelf edge to the continental slope and are potential biodiversity hotspots. We will show animations of larval movement near canyons within the Gascoyne CMR; larval dispersal probability clouds partitioned by depth and time; as well as matrices of connectivity values among features of interest. We demonstrate how the data can be used to identify connectivity corridors in marine environments, and how the matrices can be analysed to identify key connections within the network. Information from the model can be used to inform priorities for monitoring the performance of reserves through examining net contributions of different reserves (i.e. are they sources or sinks), and studying changes in connectivity structure through adding and removing reserve areas.

  • Geoscience Australia completed an underwater towed video survey (GA survey 0338) of the Shelf Rocky Reefs Key Ecological Feature (KEF) in the vicinity of the Solitary Islands in collaboration with the New South Wales Office of Environment and Heritage on the R.V. Bombora between 7 - 16 August 2012. The aim of the survey was to characterize benthic habitat in areas of the KEF, and to compare and contrast the effectiveness of different methods for capturing visual representations of biological communities. The survey collected forward-facing mono video, forward-facing stereo video, and downward facing stills along 12 transects, each of 2 km length. The geographic position of the vessel was determined using a GPS system, and the location of the towed camera body was recorded using a USBL system. The KEF survey was part of the National Marine Biodiversity Hub's National Monitoring Evaluation and Reporting Theme. The aim of this theme is to develop a blueprint for the sustained monitoring of the Commonwealth Marine Reserve Network, specifically; 1) to contribute to an inventory of demersal and epibenthic conservation values in the KEF and; 2) to test methodologies and deployment strategies in order to inform future survey design efforts. Embargo statement: Resource embargoed pending completion of NERP research. Release date 31 December 2014 Attribution statement: Users of NERP Marine Biodiversity Hub data are required to clearly acknowledge the source of the material in the format: "Data was sourced from the NERP Marine Biodiversity Hub" the Marine Biodiversity Hub is supported through funding from the Australian Government's National Environmental Research Program (NERP), administered by the Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC)." Dataset name: National Environmental Research Program (NERP) Marine Biodiversity Hub, 2012, Flinders Commonwealth Marine Reserve Shelf Backscatter

  • The Leeuwin Current has significant ecological impact on the coastal and marine ecosystem of south-western Australia. This study investigated the spatial and temporal dynamics of the Leeuwin Current using monthly MODIS SST dataset between July 2002 and December 2012. Topographic Position Index layers were derived from the SST data for the mapping of the spatial structure of the Leeuwin Current. The semi-automatic classification process involves segmentation, 'seeds' growing and manual editing. The mapping results enabled us to quantitatively examine the current's spatial and temporal dynamics in structure, strength, cross-shelf movement and chlorophyll a characteristic. It was found that the Leeuwin Current exhibits complex spatial structure, with a number of meanders, offshoots and eddies developed from the current core along its flowing path. The Leeuwin Current has a clear seasonal cycle. During austral winter, the current locates closer to the coast (near shelf break), becomes stronger in strength and has higher chlorophyll a concentrations. While, during austral summer, the current moves offshore, reduces its strength and chlorophyll a concentrations. The Leeuwin Current also has notable inter-annual variation due to ENSO events. In El Niño years the current is likely to reduce strength, move further inshore and increase its chlorophyll a concentrations. The opposite occurs during the La Niña years. In addition, this study also demonstrated that the Leeuwin Current has a significantly positive influence over the regional nutrient characteristics during the winter and autumn seasons. Apart from surface cooling and advection, the Leeuwin Current's sizable cross-shelf movement may be another contributing factor to the seasonal and inter-annual variations of its chlorophyll a concentrations.

  • In the past two decades, multibeam sonar systems have become the preferred seabed mapping tool. Many users have assumed that multibeam bathymetry data is highly accurate in spatial position. In reality, both vertical and horizontal uncertainties exist in every data point. These uncertainties are often represented as one single measure of Total Propagated Uncertainty (TPU). TPU is important to understand because it affects the quality of products generated from multibeam bathymetry data. To account for the magnitude and spatial distribution of this influence, an objective uncertainty analysis is required. Randomisation is the key process in such an uncertainty analysis. This study compared two randomisation methods, restricted spatial randomness (RSR) and complete spatial randomness (CSR), in an uncertainty analysis of a slope gradient dataset derived from multibeam bathymetry data. CSR regards data error in every grid cell as independent and assumes that the data error varies within a known statistical distribution without any neighbourhood effect. RSR assumes spatial structure and thus spatial auto-correlation in the data. We present a case study from a survey of the Oceanic Shoals Commonwealth Marine Reserve in the Timor Sea, conducted in 2012 by the Marine Biodiversity Hub through the Australian Government National Environmental Research Program. The survey area is characterised by steep-sided carbonate banks and terraces with abrupt breaks in slope of limited spatial extent. As habitats, the carbonate banks and terraces are important because they provide hardground for diverse epibenthic assemblages of sponges and corals, with their steep sides marking the environmental transition to deeper water, soft sediment habitats. In this analysis, the data errors in the multibeam bathymetry data were assumed to follow a Gaussian distribution with a mean of zero and a standard deviation represented by the TPU. The CSR and RSR methods were each implemented using a Monte Carlo procedure with 500 iterations. After about 300 iterations, the Monte Carlo procedure converged for both methods. Results for the study area are compared against pre-processed slope data (Figure 1a). The averaged slope gradient from the CSR method is 4.5 degree greater than the original slope layer, whereas for the RSR method this value is 0.03 degree. Moreover, the slope layer from the CSR method resolves noticeably less detail than the original slope layer and is an over-simplification of the true bathymetry (Figure 1b). In contrast, the RSR method maintained the spatial pattern and detail observed in the original slope layer (Figure 1c). This study demonstrates that although the uncertainty in multibeam bathymetry data should not be ignored, its impact on the subsequent derivative analysis may be limited. The selection of appropriate randomisation method is important for the uncertainty analysis. When the data errors exhibit spatial structure, we recommend using the RSR method.

  • A short film describing the processes of bathymetric mapping and side scan sonar, used to gather data within the search area for missing Malaysia Airlines flight MH370. Synopsis: The film begins with a brief description of Geoscience Australia's role working with the lead agencies in the search process. It explains that existing satellite data is not detailed enough to assist in the search for MH370 and that more detailed bathymetric surveying is required before an underwater search can commence. The film describes how a bathymetric survey is carried out using sonar systems mounted on a ship's hull. It then shows imagery derived from the bathymetric mapping of the search area. The film then shows how a detailed underwater search is carried out, using the bathymetry as a guide. Animation shows how a towed, submersible vehicle gathers more detailed data while travelling slowly at a height of approximately 100 metres above the sea floor. The animation shows how side scan sonar reveals more detailed information about sea floor features. The film ends with a brief summary of the role of the Australian Government agencies involved in the search. Brief credits follow with a copyright statement and publication information. About the data visualisation: This video contains data visualisation and animation sequences. Bathymetry visualisations are derived from data gathered within the MH370 search area. Side scan sonar visualisations are derived from demonstration data only, not gathered within the MH370 search area. Animation sequences showing ship-mounted bathymetry and towed side-scan sonar are representations only and not to scale. Film production credits: Geoscience Australia Script, Direction: Bobby Cerini, Melinda Holland Edit, Cinematography, Sound: Michael O'Rourke Production Management: Bobby Cerini, Neil Caldwell 3D Data Visualisation, Animation: Neil Caldwell, Michael de Hoog Graphics: Kath Hagan Scientific Advice: Stuart Minchin, Anna Potter, Maggie Tran, Tanya Whiteway, Kim Picard Additional credits: Voiceover: Media Sound Studios Music: 'Namaste' by Jason Shaw, 2013 Animation of Globe: 'Earth in Cycles' by Adriano, 2012 3D Data Visualisation and Animation (ship, bathymetry, side scan, ocean features): Eye Candy Animation Producer: Damian Stocks Creative Director: Rachael Johnson Studio Manager: Jess Burrows Lead Artist: Artur Piwko 3D Artist: Kynan Stevenson

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.