2021
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This web service provides access to datasets generated by the North Australian Craton (NAC) Iron Oxide Copper Gold (IOCG) Mineral Potential Assessment. Two outputs were created: a comprehensive assessment, using all available spatial data, limiting data where possible to capture mineral systems older than 1500 ma, and; a coverage assessment, which is constrained to data that have no reliance on outcrop or age of mineralisation.
-
This web service provides access to datasets generated by the North Australian Craton (NAC) Iron Oxide Copper Gold (IOCG) Mineral Potential Assessment. Two outputs were created: a comprehensive assessment, using all available spatial data, limiting data where possible to capture mineral systems older than 1500 ma, and; a coverage assessment, which is constrained to data that have no reliance on outcrop or age of mineralisation.
-
The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2021 acreage release consists of 21 areas offshore of Western Australia, Victoria, Tasmania and the Ashmore and Cartier Islands.
-
The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2021 acreage release consists of 21 areas offshore of Western Australia, Victoria, Tasmania and the Ashmore and Cartier Islands.
-
The Earthquake Scenario Selection is an interactive tool for querying, visualising and downloading earthquake scenarios. There are over 160 sites nationally with pre-generated scenarios available. These represent plausible future scenarios that can be used for earthquake risk management and planning (see https://www.ga.gov.au/about/projects/safety/nsha for more details).
-
This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).
-
This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).
-
Google has partnered with hundreds of museums, cultural institutions and archives including Geoscience Australia to host treasures from our National Mineral and Fossil Collection online on the Google Arts & Culture website. Our building's public areas have been scanned and are online via a streetview virtual tour, there are a large number of collection items uploaded which have been used to create many unique and fascinating exhibits.
-
Abstract submitted for presentation to European Geosciences Union General Assembly, April, 2019
-
To deliver open data, government agencies must deal with legacy processes, both social and technical, that contain barriers to openness. These barriers limit the true usability of open data - how it can be used over time and in multiple contexts - and are critical to address as governments seek to expose open data. Linked Data (LD) has always been, at its core, about ensuring the FAIR Data Principles (Findable, Accessible, Interoperable, Reusable) by focusing on the identity and relationship of entities and exposing their context to consumers of data, even if these principles have only recently been named FAIR. A fundamental component of LD is that entities are identified by sustainable URI references called Persistent Identifiers (PIDs) which retain their utility over time despite system and organisation change. This poster will show how Geoscience Australia (GA) is applying the use of LD & PIDS in a real world, production IT, setting. Long running operational processes have been incrementally advanced to deliver data from relational databases as LD. Policies, practices and tools have developed and applied to support these LD delivery. The key components are: Data transformation tools: reliant on a robust internal data schema, the Corporate Data Model, these tools export views of it as XML or CSV publicly which is then converted to RDF in another step Overarching data model: a Semantic Web ontology that outlines the types of entities delivered publicly by GA and their macro relations. To date, public entities are Datasets, Web Services, vocabulary terms and geological Samples, Sites Surveys and Stratigraphic Units. New objects will include images with multiple formats and resolutions PID service: an application that manages a series of PID redirection rules PID governance policy: the defined process to support the agency with its multiple teams and their different data sources to have consistent application of entity identification rules and ensure uniqueness across multiple systems in the same registers pyLDAPI data service tools: a Web API tool that can present LD endpoints for entities according to given ontologies Cloud infrastructure as code (infracode): Provisioning of LD data holding RDF triple stores on the public cloud following agency best practice in delivering scalable solutions. The tools used are Apache’s Jena/Fuseki triplestore and API deployed on Amazon Web Services (AWS) with scalability through AWS Elastic Load Balancer and Elastic File Store components. Further work will explore suitability of the new triple store on AWS Neptune.