2013
Type of resources
Keywords
Publication year
Scale
Topics
-
This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.
-
Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software
-
This report gives an overview of the activities of the Geoscience Australia IVS Analysis Center during 2012
-
"Spot Heights. (dataset derived from the DIgital Chart of the World (DCW) HY_POINT and HS_POINT coverages). For more information on the Digital Chart of the World data please browse the DCW Internet Site <a href=""http://www.maproom.psu.edu/dcw/"">http://www.maproom.psu.edu/dcw/</a>. Data can be downloaded from here in <b>vpf format</b>. <p>NOTE : For more accurate and detailed data covering <b>continental Australia only</b> please obtain the <b><a href=""http://www.auslig.gov.au/download/"">Global Map Data 1M</a></b> <p><b>Generic information on DCW datasets :-</b> <br>The primary source for DCW is the US Defense Mapping Agency (DMA) Operational Navigation Chart (ONC) series produced by the United States, Australia, Canada, and the United Kingdom. The ONC's have a scale of 1:1,000,000, where 1 inch equals approximately 16 miles.The charts were designed to meet the needs of pilots and air crews in medium and low altitude en route navigation and to support military operational planning, intelligence briefings, and other needs. Therefore, the selection of ground features is based on the requirement for rapid visual recognition of significant details seen from a low perspective angle. The DCW database was originally published in 1992. Data currency varies from place to place depending on the currency of the ONC charts. Chart currency ranges from the mid 1960's to the early 1990's. Compilation dates for every ONC chart are included in the database."
-
2013 Acreage Release Areas W13-19 and W13-20 in the offshore northern Perth Basin, Western Australia, cover more than 19,000 km2 in parts of the Houtman, Abrolhos, Zeewyck and Gascoyne sub-basins. The Release Areas are located adjacent to WA-481-P, the only offshore exploration permit active in the Perth Basin, granted to joint venture partners Murphy Australia Oil Pty Ltd, Kufpec Australia Pty Ltd and Samsung Oil and Gas Australia Pty Ltd in September 2012. Geoscience Australia recently undertook a regional prospectivity study in the area as part of the Australian Government's Offshore Energy Security Program. A revised sequence stratigraphic framework, based on new biostratigraphic sampling and interpretation, and an updated tectonostratigraphic model, using multiple 1D burial history models for Permian to Cenozoic sequences, give fresh insights into basin evolution and prospectivity. Geochemical studies of key offshore wells demonstrated that the late Permian's Lower Triassic Hovea Member oil-prone source interval is regionally extensive offshore in the Abrolhos and potentially Houtman sub-basins. This is supported by fluid inclusion data that provides evidence for palaeo-oil columns within Permian reservoirs in wells from the Abrolhos Sub-basin. Additionally, oil trapped in fluid inclusions in Houtman-1 can be linked to Jurassic source rocks suggesting that multiple petroleum systems are effective in the Release Areas. A trap integrity analysis was undertaken to mitigate exploration risks associated with trap breach during Early Cretaceous breakup and provides a predictive approach to prospect assessment. Potential seepage sites on the seafloor over recently reactivated faults correlate with hydroacoustic flares, pockmarks and dark colored viscous fluid observed over the areas. These observations may indicate an active modern-day petroleum system in the Houtman Sub-basin. The presence of a Jurassic petroleum system combined with the extension of the Hovea Member source rock offshore, the potential presence of seeps and results from trap integrity studies provide a platform to revitalize exploration in the offshore northern Perth Basin. The APPEA Journal
-
This is a polygon file, one of five within the Rockhampton Regional Council coastline, which buffers the coastline by 4 km inland. This extent was use to clip the storm tide inundation extents and to visualise each of the five distinct inundation zones. This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173).
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). This file identifes the storm tide inundation extent for a specific Average Recurrence Interval (ARI) event. Naming convention: SLR = Sea Level Rise s1a4 = s1 = Stage 1(extra-tropical storm tide), s2 = Stage 2 (tropical cyclone storm tide) (relating to Haigh et al. 2012 storm tide study), a4 = area 4 and a5 = area 5 2p93 = Inundation height, in this case 2.93 m Dice = this data was processed with the ESRI Dice tool.
-
"Hypsography as either linework or polygons. (dataset derived from the DIgital Chart of the World (DCW), either HY_ARC or HY_POLY). For more information on the Digital Chart of the World data please browse the DCW Internet Site <a href=""http://www.maproom.psu.edu/dcw/"">http://www.maproom.psu.edu/dcw/</a>. Data can be downloaded from here in <b>vpf format</b>. <p>NOTE : For more accurate and detailed data covering <b>continental Australia only</b> please obtain the <b><a href=""http://www.auslig.gov.au/download/"">Global Map Data 1M</a></b> <p><b>Generic information on DCW datasets :-</b> <br>The primary source for DCW is the US Defense Mapping Agency (DMA) Operational Navigation Chart (ONC) series produced by the United States, Australia, Canada, and the United Kingdom. The ONC's have a scale of 1:1,000,000, where 1 inch equals approximately 16 miles.The charts were designed to meet the needs of pilots and air crews in medium and low altitude en route navigation and to support military operational planning, intelligence briefings, and other needs. Therefore, the selection of ground features is based on the requirement for rapid visual recognition of significant details seen from a low perspective angle. The DCW database was originally published in 1992. Data currency varies from place to place depending on the currency of the ONC charts. Chart currency ranges from the mid 1960's to the early 1990's. Compilation dates for every ONC chart are included in the database."
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). This file identifes the storm tide inundation extent for a specific Average Recurrence Interval (ARI) event. Naming convention: SLR = Sea Level Rise s1a4 = s1 = Stage 1(extra-tropical storm tide), s2 = Stage 2 (tropical cyclone storm tide) (relating to Haigh et al. 2012 storm tide study), a4 = area 4 and a5 = area 5 2p93 = Inundation height, in this case 2.93 m Dice = this data was processed with the ESRI Dice tool.
-
Locations of RADARSAT scenes within the Australian marine region. This dataset represents all the radarsat (SAR) scenes GA (PMD) has purchased and have stored in-house. SAR stands for Synthetic Aperature Radar. RADARSAT is a Canadian satellite and scenes are from a company called RADARSAT International (RSI). GA (PMD) updates its holdings of these satellite scenes on a 6 monthly basis. Almost all scenes have been interpreted by GA and external contractors.