From 1 - 10 / 74
  • As part of the Climate Futures for Tasmania project (CFT) Geoscience Australia's Risk and Impact Analysis Group (RIAG) is conducting a severe wind hazard assessment for Tasmania under current climate conditions as well as two future climate scenarios. The assessment uses climate-simulated data generated by a high resolution regional model. A poster presented to this workshop shows the main results of the project [1]; a brief description of the methodology developed for the project is discussed in a paper also presented to this workshop [2]. In this paper three possible sources of error in the calculation of the severe wind hazard (using the methodology discussed in [2]) will be examined and recommendations on ways to improve the model results will be provided.

  • This project aims to improve the estimation of tropical cyclone risk in the Australian region by employing a numerical simulation approach based on a climate model. Climate models are the main tools used for predicting the effects of climate change, but usually they have employed resolutions too coarse to simulate reliably smaller weather systems such as tropical cyclones. In this work, a regional climate model of unprecedented fine resolution (the CSIRO regional model CCAM) will be implemented over the Australian region and an improved estimate both of present-day and future tropical cyclone hazard will be made. When combined with the results of a tropical cyclone damage model, new estimates of the tropical cyclone risk to infrastructure in northern Australia will be obtained

  • Geoscience Australia (GA) embarked on the development of the National Exposure Information System (NEXIS) project in response to the Council of Australian Governments (COAG) reform commitment on Australia's ability to manage natural disasters and other emergencies. The COAG commitment was for the establishment of a nationally consistent system of data collection, research and analysis to ensure a sound knowledge base on natural disasters and disaster mitigation - (DOTARS 2002). NEXIS has also been identified as an important component for improving several projects of national interest within Geoscience Australia (GA). These include the Risk Analysis Methods Section (RAMS), Climate hazards and Risk Section (CHRS) and the Vulnerability Section (VS) which investigate natural and man-made risks and their impacts on the community. The NEXIS was developed by the Exposure Information Section (EIS), National Geographic Information Group (NGIG), formerly the Engineering, Economic and Exposure Project (E3P), Risk and Impact Analysis Group (RIAG), within Geoscience Australia. It has a key role to gather accurate and up-to-date exposure information about Australia's resident population and buildings. This information is used when calculating the risk from natural and man-made disasters in order to inform policy and operational decision makers of the impact on Australian communities. In order to understand the effects a natural or man-made disaster could have on a community we need to know as much as we can about the people and buildings that occupy that area. This includes information about: People: how many people will be affected and where they live Buildings: the type of construction materials used, the number of storeys, and age all contribute to how a building withstands damage Cost : how much will it cost to rebuild a house or replace contents if damaged This information is used to not only investigate physical impacts of a disaster, but also forms base information that is needed to help inform the socio-economic impacts, such as loss to the business community when impacted by severe cyclonic wind storms. The National Exposure Information System (NEXIS) aims to maintain building level detail for all residential, commercial and industrial building in Australia. NEXIS information is available at Local Government Are (LGA) & Statistical Local Area (SLA)

  • Geoscience Australia's Earthquake Risk Model (EQRM) is an event-based tool for modelling the ground motion and loss associated with individual earthquake scenarios as well as probabilistic seismic hazard (PSHA) and risk (PSRA) analysis. It has been used to conduct PSHA and PSRA for many of Australia's largest cities and it has become an important tool for the emergency management community which uses it for scenario response planning. This tool is being refined for use in Australian earthquake monitoring programs to provide automatic loss estimates within minutes of an earthquake occurring. An open-source beta-release version of the software is freely available on SourceForge (https://sourceforge.net/projects/eqrm). It can be used for hazard or risk analyses in any region of the world by supplying appropriately formatted input files. Source code is also supplied so advanced users can modify individual components to suit their needs.

  • The National Exposure Information System (NEXIS) project is an initiative of Geoscience Australia in response to the Australian Government's research priority of safeguarding Australian communities from natural hazards, critical infrastructure failures and policy development. The governmental priority urges the implementation of a 'nationally consistent system of data collection, research and analysis to ensure a sound knowledge-base on natural disasters and disaster mitigation'. The infrastructure exposure definition and development framework suitable for multi hazards and climate change impact analysis is highly complex. NEXIS aims to meet the challenge by collecting, collating and maintaining nationally consistent exposure information at the individual building level. This requires detailed spatial analysis and the integration of available demographic, structural and statistical data for various sectors. The system integrates data from several national spatial databases, such as the Geocoded National Address File, the Property Cadastre, Australian Bureau of Statistics (ABS) census data, and building data from Australian state governments. It also includes post disaster survey information and data from several infrastructure agencies and local government bodies. NEXIS provides a representative assessment of asset exposure to several hazard models which can be aggregated to an appropriate level from State to mesh block level for the required application. By integrating the information with the decision-support tools of alert systems and early warning, it can enable the rapid forecasting of the impacts due to various hazards (infrastructure damage and casualties). Currently it is being used for tactical response for emergency managers and strategic policy and planning development. In addition to enabling research in Geoscience Australia's risk and impact analysis projects, it supports several government initiatives across the departments and national committees.

  • Short Version - shows orthographic animations only for each of 5 scenarios with a combined maximum inundation outline for 3 scenarios at end. Description: - Tropical Cyclone Alby passed close to the southwest corner of West Australia on April 4th 1978. Large waves and a storm surge generated by the northerly winds caused substantial coastal erosion along the Lower West coast particularly in the Geographe Bay area. Low-lying areas at Bunbury and Busselton were flooded, forcing the evacuation of many homes including the Bunbury Nursing Home. An approximate 1.1 m storm surge at Busselton caused the tide to peak at 2.5 m about 1 m above the highest astronomical tide. The Busselton Jetty was severely damaged. At Fremantle the surge was about 0.6 m causing a high tide of 1.8 m, about 0.5 m above the highest astronomical tide. [From BOM - http://www.bom.gov.au/weather/wa/cyclone/about/perth/alby.shtml - Retrieved 21/01/2010] This movie displays the results of a number of simulated storm surge events caused by an equivalent storm to Tropical Cyclone Alby on the current built terrain of Mandurah, and projected 2100 coastline with 0.5, 0.8 and 1.1m rises in sea level.

  • A comprehensive earthquake impact assessment requires an exposure database with attributes that describe the distribution and vulnerability of buildings in the region of interest. The compilation of such a detailed database will require years to develop for a moderate-sized city, let alone on a national scale. To hasten this database development in the Philippines, a strategy has been employed to involve as many stakeholders/organizations as possible and equip them with a standardized tool for data collection and management. The best organizations to tap are the local government units (LGUs) since they have better knowledge of their respective area of responsibilities and have a greater interest in the use of the database. Such a tool is being developed by PHIVOLCS-DOST and Geoscience Australia. Since there are about 1,495 towns and cities in the country with varying financial capacities, this tool should involve the use of affordable hardware and software. It should work on ordinary hardware, such as an ordinary light laptop or a netbook that can easily be acquired by these LGUs. The hardware can be connected to a GPS and a digital camera to simultaneously capture images of structures and their location. The system uses an open source database system for encoding the building attributes and parameters. A user-friendly GUI with a simplified drop-down menu, containing building classification schema, developed in consultation with local engineers, is utilised in this system. The resulting national database is integrated by PHIVOLCS-DOST and forms part of the Rapid Earthquake Damage Assessment System (REDAS), a hazard simulation tool that is also made available freely to partner local government units.

  • Governments at the Commonwealth, State, Territory and Local level are committed to minimising the impact of natural disasters through a variety of Disaster Risk Reduction (DRR) programs. Risk analysis is one of the processes undertaken to inform DRR decision making and policy development. It involves estimating the extent and severity of one or more natural hazards, understanding the location and characteristics of the 'elements at risk' from those hazards (also known as exposure) and modelling the vulnerability and response of those elements exposed to the subject hazards. Understanding the vulnerability of buildings is crucial in risk analysis activities, as damage to buildings can have significant direct and indirect impacts on individuals, communities, economies and the functioning of society at large. The development of quality spatially-enabled information is a key activity in the risk analysis process. After demonstrating a proof of concept in 2005-2006, Geoscience Australia has led the development of exposure information for Australia via the National Exposure Information System (NEXIS). Within NEXIS, currently available spatial and non-spatial data from various sources is routinely combined, reorganised for consistency, managed and supplied to stakeholders. The products derived from NEXIS enable risk analysis specialists and policy makers to access recent exposure information they require to analyse and assess the risk posed by the hazards in Australia. At the core of NEXIS is information about buildings. There are many challenges to developing and providing reliable information about buildings across the country. Through an offer of assistance from the ACT Government, Geoscience Australia has developed an innovative and rapid method to analyse and interpret cadastral data to estimate an important exposure attribute. This presentation describes the development of the method, the resulting benefits for exposure information in the ACT and outlines how cadastral data can improve DRR outcomes across Australia.

  • The impacts of climate change on sea level rise (SLR) will adversely affect infrastructure in a significant number of Australian coastal communities. A first-pass national assessment has identified the extent and value of infrastructure potentially exposed to impacts from future climate by utilizing a number of fundamental national scale datasets. A mid-resolution digital elevation model was used to model a series of SLR projections incorporating 100 year return-period storm-tide estimates where available (maximum tidal range otherwise). The modeled inundation zones were overlaid with a national coastal geomorphology dataset, titled the Smartline, which identified coastal landforms that are potentially unstable under the influence of rising sea level. These datasets were then overlain with Geoscience Australia's National Exposure Information System (NEXIS) to quantify the number and value of infrastructure elements (including residential and commercial buildings, roads and rail) potentially vulnerable to a range of sea-level rise and coastal recession estimates for the year 2100. In addition, we examined the changes in exposure under a range of future Australian Bureau of Statistics population scenarios. We found that over 270,000 residential buildings are potentially vulnerable to the combined impacts of inundation and recession by 2100 (replacement value of approximately $A72 billion). Nearly 250,000 residential buildings were found to be potentially vulnerable to inundation only ($A64 billion). Queensland and New South Wales have the largest vulnerability considering both value of infrastructure and the number of buildings affected. Nationally, approximately 33,000 km of road and 1,500 km of rail infrastructure are potentially at risk by 2100.

  • The Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Geoscience Australia are developing a long-term partnership in order to better understand and reduce the risks associated with earthquake hazards in the Philippines. The current partnership is specifically designed to enhance the damage estimation capabilities of the Rapid Earthquake Damage Assessment System (REDAS) software, developed by PHIVOLCS. We have chosen Iloilo City, Western Visayas, as the pilot community to demonstrate our earthquake risk assessment - QuiveR (Quick Unified Inventory of Vulnerability and Exposure for REDAS) Any natural hazard risk assessment requires an understanding on the nature and vulnerability of the building stock in the region of interest. We have acquired two main datasets; 1) the Philippine National Statistics Office census data; and 2) the Iloilo City Assessors Office Data, each providing unique attributes on the nature of the building stock and socio-economic indicators for the city. Finally, to supplement and validate these data, we conducted building surveys within Iloilo City. Through this project, we have engaged with local structural engineering community which led to the development of a National Building Classification Schema and consensus-based vulnerability curves for key building types in the Philippines. Finally, we discuss how models from this engagement process have been incorporated into REDAS to enable risk calculations for scenario earthquakes near Iloilo City. Finally, we have demonstrated how detailed understanding of the building stock in a local community can assist with natural hazard risk assessments - not just for risk reduction and response activities for future earthquakes, but possibly for a range of natural hazards.