Surface Processes
Type of resources
Keywords
Publication year
Scale
Topics
-
Melbourne Geelong LiDAR 2007
-
These datasets cover all of Gold Coast City and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape Purpose: To provide highly accurate elevation data for use in risk assessment, the management of natural disasters, infrastructure planning, developing strategies to support climate change, topographic mapping and modelling. Environment description: Language: eng Character set: unknown
-
The purpose of the Tenterfield capture was to firstly test all procedures associated with Lands LiDAR program on a larger scale, more similar to what we believe to be a standard sized job. The purpose also extends to providing a usable surface model of the entire catchment along with a high point density focus area over the urban area of Tenterfield.
-
These datasets cover approximately 4500 sq km along the entire coastal strip of the Gladstone Regional Council and over all of Curtis and Facing Islands and are part of the 2009 Gladstone LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape
-
This job is part of the Town capture program as prioritized by the SES
-
Brimbank LiDAR 2007
-
These datasets cover approximately 2290 sq km in the eastern and southern sectors of the Cairns Regional Council and were captured as part of the 2010 Cairns LiDAR project. This project, undertaken by Terranean Mapping Technologies on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, vegetation or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape
-
This job was part of the Coastal capture program. It captures from the coast to the 10m contour interval.
-
These datasets cover approximately 161 sq km along the northern boundary of the Cassowary Coast Regional Council and were captured as part of the 2010 Cairns LiDAR project. This project, undertaken by Terranean Mapping Technologies on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, vegetation or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape
-
Up to date information about the extent and location of surface water provides all Australians with a common understanding of this valuable and increasingly scarce resource. Digital Earth Australia Waterbodies shows the wet surface area of waterbodies as estimated from satellites. It does not show depth, volume, purpose of the waterbody, nor the source of the water. Digital Earth Australia Waterbodies uses Geoscience Australia’s archive of over 30 years of Landsat satellite imagery to identify where over 300,000 waterbodies are in the Australian landscape and tells us the wet surface area within those waterbodies. It supports users to understand and manage water across Australia. For example, users can gain insights into the severity and spatial distribution of drought, or identify potential water sources for aerial firefighting during bushfires. The tool uses a water classification for every available Landsat satellite image and maps the locations of waterbodies across Australia. It provides a timeseries of wet surface area for waterbodies that are present more than 10% of the time and are larger than 2700m2 (3 Landsat pixels). The tool indicates changes in the wet surface area of waterbodies. This can be used to identify when waterbodies are increasing or decreasing in wet surface area. Refer to Krause et al. 2021 for full details of this dataset. https://doi.org/10.3390/rs13081437