From 1 - 10 / 113
  • This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Galilee Basin is a large intracratonic sedimentary basin in central Queensland. The basin contains a variably thick sequence of Late Carboniferous to Middle Triassic clastic sedimentary rocks dominated by laterally extensive sandstone, mudstone and coal. These rocks were mostly deposited in non-marine environments (rivers, swamps and lakes), although there is minor evidence for marginal marine settings such as deltas and estuaries. Sedimentation did not occur continuously across the approximately 90 million year history of basin development, and intervals of episodic compression, uplift and erosion were marked by distinct depositional breaks. Over much of the surface area of the Galilee Basin the main aquifers targeted for groundwater extraction occur in the younger rocks and sediments that overlie the deeper sequence of the Galilee Basin. The primary aquifers that supply groundwater in this region are those of the Eromanga Basin, as well as more localised deposits of Cenozoic alluvium. However, in the central-east and north-east of the Galilee Basin, the Carboniferous to Triassic rocks occur at or close to surface and several aquifer units supply significant volumes of groundwater to support pastoral and town water supplies, as well as being the water source for several spring complexes. The three main groundwater systems identified in the Galilee Basin occur in the 1. Clematis Group aquifer, 2. partial aquifer of the upper Permian coal measures (including the Betts Creek beds and Colinlea Sandstone), and 3. aquifers of the basal Joe Joe Group. The main hydrogeological units that confine regional groundwater flow in the Galilee Basin are (from upper- to lower-most) the Moolayember Formation, Rewan Formation, Jochmus Formation and Jericho Formation. However, some bores may tap local groundwater resources within these regional aquitards in areas where they outcrop or occur close to surface. Such areas of localised partial aquifer potential may be due in part to enhanced groundwater storage due to weathering and fracturing.

  • The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. A key focus area of the initiative is the South Nicholson region, situated across the Northern Territory and Queensland border. The South Nicholson region is located between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland–Northern Territory, which both have demonstrated hydrocarbon and base metal resources. In contrast, the South Nicholson region is not well understood geologically, is mostly undercover with limited well data, and prior to EFTF contained limited seismic coverage. Re–Os analyses in this study were undertaken to complement seismic data, U–Pb geochronology and geochemistry data to better understand the geological evolution and resource potential of the South Nicholson region. Five organic carbon bearing sedimentary samples from drillholes BMR Ranken 1, NTGS00/1, DDH 83/1 and DDH 83/4 located across the South Nicholson region were analysed for whole rock Re–Os. The aim of the analyses was to better constrain the depositional age of basin units in the region, and to potentially provide insights into the timing of post-depositional processes such as fluid events and hydrocarbon generation and/or migration. Samples belong to the Mesoproterozoic South Nicholson Group, Paleoproterozoic Fickling and McNamara groups, and the Neoproterozoic to Devonian Georgina Basin. Samples were analysed at the University of Alberta, Canada.

  • Resources for promoting the use of the Australian Stratigraphic Units Database and proper stratigraphic nomenclature.

  • This Surat Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Surat Basin is a sedimentary basin with approximately 2500 m of clastic fluvial, estuarine, coastal plain, and shallow marine sedimentary rocks, including sandstone, siltstone, mudstone, and coal. Deposition occurred over six cycles from the Early Jurassic to the Cretaceous, influenced by eustatic sea-level changes. Each cycle lasted 10 to 20 million years, ending around the mid-Cretaceous. Bounded by the Auburn Arch to the northeast and the New England Orogen to the southeast, it connects to the Clarence-Moreton Basin through the Kumbarilla Ridge. The Central Fold Belt forms its southern edge, while Cenozoic uplift caused erosion in the north. The basin's architecture is influenced by pre-existing faults and folds in the underlying Bowen Basin and the nature of the basement rocks from underlying orogenic complexes. Notable features include the north-trending Mimosa Syncline and Boomi Trough, overlying the deeper Taroom Trough of the Bowen Basin and extending southwards. The Surat Basin overlies older Permian to Triassic sedimentary basins like the Bowen and Gunnedah Basins, unconformably resting on various older basement rock terranes, such as the Lachlan Orogen, New England Orogen, and Thomson Orogen. Several Palaeozoic basement highs mark its boundaries, including the Eulo-Nebine Ridge in the west and the Kumbarilla Ridge in the east. Paleogene to Neogene sediments, like those from the Glendower Formation, cover parts of the Surat Basin. Remnant pediments and Cenozoic palaeovalleys incised into the basin have added complexity to its geological history and may influence aquifer connections. Overall, the Surat Basin's geological history is characterized by millions of years of sedimentation, tectonic activity, and erosion, contributing to its geological diversity and economic significance as a source of natural resources, including coal and natural gas.

  • This Tasmania Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Late Carboniferous to Late Triassic Tasmania Basin covers approximately 30,000 square kilometres of onshore Tasmania. The basin contains up to 1500 m of mostly flat-lying sedimentary rocks, and these are divided into two distinct lithostratigraphic units, the Lower and the Upper Parmeener Supergroup. The Lower Parmeener Supergroup comprises Late Carboniferous to Permian rocks that mainly formed in marine environments. The most common rock types in this unit are mudstone, siltstone and sandstone, with less common limestone, conglomerate, coal, oil shale and tillite. The Upper Parmeener Supergroup consists predominantly of non-marine rocks, typically formed in fluvial and lacustrine environments. Common rock types include sandstone, siltstone, mudstone and minor basalt layers. Post-deposition the rocks of the Parmeener Supergroup experienced several major geological events, including the widespread intrusion of tholeiitic dolerite magma during the Middle Jurassic.

  • A compilation of thematic summaries of 42 Australian Groundwater Provinces. These consistently compiled 42 summaries comprise the National Hydrogeological Inventory. The layer provides the polygons for each groundwater province in the inventory and thematic information for each province, including location and administration information, demographics, physical geography, surface water, geology, hydrogeology, groundwater, groundwater management and use, environment, land use and industry types and scientific stimulus.

  • This South-east Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Groundwater in Australia's fractured rock aquifers is stored in fractures, joints, bedding planes, and cavities within the rock mass, comprising about 40% of the country's groundwater. Much of this water can be utilized for irrigation, town water supplies, stock watering, and domestic use, based on state regulations. Fractured systems account for approximately 33% of all bores in Australia but contribute to only 10% of total extraction due to variable groundwater yield. Quantifying groundwater movement in fractured rock systems is challenging, as it depends on the distribution of major fractures. Groundwater flow direction is more influenced by the orientation of fractures than hydraulic head distribution. Recharge in fractured rock aquifers is typically localized and intermediate. In Eastern Australia, New South Wales' Lachlan Orogen, which extends from central and eastern New South Wales to Victoria and Tasmania, is a significant region with diverse lithological units, including deep marine turbidites, shallow marine to sub-areal sediments, extensive granite bodies, and volcano-intrusive complexes. This region contains various mineral deposits, such as orogenic gold, volcanic-hosted massive sulphide, sediment-hosted Cu-Au, porphyry Au-Cu, and granite-related Sn. Note: The study does not include additional Orogens in the east (New England) and west (Thomson and Delamerian). The Delamerian Orogen is present throughout western Tasmania.

  • This Carpentaria Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carpentaria Basin is a vast intra-cratonic sedimentary basin situated on and offshore in north-eastern Australia, covering around 550,000 square kilometres across Queensland and the Northern Territory. It comprises predominantly sandstone-rich rock units deposited during sea level highs from the Late Jurassic to Mid Cretaceous. The basin overlies a heterogeneous Proterozoic basement and is separated from contemporaneous sedimentary structures by basement highs and inliers. Four main depocentres within the larger Carpentaria Basin form four major sub-basins: the Western Gulf Sub-basin, Staaten Sub-basin, Weipa Sub-basin, and Boomara Sub-basin. While the basin is extensive and continuous in Queensland, it becomes more heterogeneous and discontinuous in the Northern Territory. Remnants of the basin's stratigraphy, referred to as the Dunmarra Basin, are found along the Northern Territory coast and inland. The depositional history commenced during the Jurassic with down warping near Cape York Peninsula, resulting in the Helby beds and Albany Pass beds' concurrent deposition. The basin experienced marine transgressions during the Cretaceous, with the Gilbert River Formation widespread and the Wallumbilla Formation occurring during sea level highs. The Carpentaria Basin's strata are relatively undeformed and unmetamorphosed. The Northern Territory sequence displays slightly different stratigraphy, limited to the height of the Aptian marine transgression above the Georgina Basin. The Walker River Formation and Yirrkala Formation represent key units in this area, outcropping as tablelands and mesas largely unaffected by tectonism.

  • This Sydney Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Sydney Basin, part of the Sydney–Gunnedah–Bowen basin system, consists of rocks dating from the Late Carboniferous to Middle Triassic periods. The basin's formation began with extensional rifting during the Late Carboniferous and Early Permian, leading to the creation of north-oriented half-grabens along Australia's eastern coast. A period of thermal relaxation in the mid Permian caused subsidence in the Bowen–Gunnedah–Sydney basin system, followed by thrusting of the New England Orogen from the Late Permian through the Triassic, forming a foreland basin. Deposition in the basin occurred in shallow marine, alluvial, and deltaic environments, resulting in a stratigraphic succession with syn-depositional folds and faults, mostly trending north to north-east. The Lapstone Monocline and Kurrajong Fault separate the Blue Mountains in the west from the Cumberland Plain in the central part of the basin. The Sydney Basin contains widespread coal deposits classified into geographic coalfield areas, including the Southern, Central, Western, Newcastle, and Hunter coalfields. These coalfields are primarily hosted within late Permian strata consisting of interbedded sandstone, coal, siltstone, and claystone units. The coal-bearing formations are grouped based on sub-basins, namely the Illawarra, Tomago, Newcastle, and Wittingham coal measures, underlain by volcanic and marine sedimentary rocks. Deposition within the basin ceased during the Triassic, and post-depositional igneous intrusions (commonly of Jurassic age) formed sills and laccoliths in various parts of the basin. The maximum burial depths for the basin's strata occurred during the early Cretaceous, reaching around 2,000 to 3,000 metres. Subsequent tectonic activity associated with the Tasman Rift extension in the Late Cretaceous and compressional events associated with the convergence between Australia and Indonesia in the Neogene led to uplift and erosion across the basin. These processes have allowed modern depositional environments to create small overlying sedimentary basins within major river valleys and estuaries, along the coast and offshore, and in several topographic depressions such as the Penrith, Fairfield and Botany basins in the area of the Cumberland Plain.

  • One page article discussing aspects of Australian stratigraphy; this article is about the need for more unit definitions.