From 1 - 10 / 20
  • DEA Surface Reflectance Nadir corrected Bidirectional reflectance distribution function Adjusted Reflectance Terrain corrected (NBART) Sentinel-2B Multispectral Instrument (MSI) is part of a suite of Digital Earth Australia's (DEA) Surface Reflectance datasets that represent the vast archive of images captured by the US Geological Survey (USGS) Landsat and European Space Agency (ESA) Sentinel-2 satellite programs, which have been validated, calibrated, and adjusted for Australian conditions — ready for easy analysis. <b>Background:</b> This is a sub-product of DEA Surface Reflectance (Sentinel-2B MSI). See the parent product for more information. Reflectance data at top of atmosphere (TOA) collected by Sentinel-2B MSI sensors can be affected by atmospheric conditions, sun position, sensor view angle, surface slope and surface aspect. Surfaces with varying terrain can introduce inconsistencies to optical satellite images through irradiance and bidirectional reflectance distribution function (BRDF) effects. For example, slopes facing the sun appear brighter compared with those facing away from the sun. Likewise, many surfaces on Earth are anisotropic in nature, so the signal picked up by a satellite sensor may differ depending on the sensor’s position. These need to be reduced or removed to ensure the data is consistent and can be compared over time. <b>What this product offers:</b> This product takes Sentinel-2B MSI imagery captured over the Australian continent and corrects the inconsistencies across the land and coastal fringe. It achieves this using Nadir corrected Bi-directional reflectance distribution function Adjusted Reflectance (NBAR). In addition, this product has a terrain illumination correction applied to correct for varying terrain. The resolution is a 10/20/60 m grid based on the ESA level 1C archive. <b>Applications:</b> - The development of derivative products to monitor land, inland waterways and coastal features, such as: - urban growth - coastal habitats - mining activities - agricultural activity (e.g. pastoral, irrigated cropping, rain-fed cropping) - water extent - The development of refined information products, such as: - areal units of detected surface water - areal units of deforestation - yield predictions of agricultural parcels - Compliance surveys - Emergency management

  • This report describes the results of an extended national field spectroscopy campaign designed to validate the Landsat 8 and Sentinel 2 Analysis Ready Data (ARD) surface reflectance (SR) products generated by Digital Earth Australia. Field spectral data from 55 overpass coincident field campaigns have been processed to match the ARD surface reflectances. The results suggest the Landsat 8 SR is validated to within 10%, the Sentinel 2A SR is validated to within 6.5% and Sentinel 2B is validated to within 6.8% . Overall combined Sentinel 2A and 2B are validated within 6.6% and the SR for all three ARD products are validated to within 7.7%.

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • Analysis Ready Data (ARD) takes medium resolution satellite imagery captured over the Australian continent and corrects for inconsistencies across land and coastal fringes. The result is accurate and standardised surface reflectance data, which is instrumental in identifying and quantifying environmental change. This product is a single, cohesive ARD package, which allows you to analyse surface reflectance data as is, without the need to apply additional corrections. ARD consists of sub products, including : 1) NBAR Surface Reflectance which produces standardised optical surface reflectance data using robust physical models which correct for variations and inconsistencies in image radiance values. Corrections are performed using Nadir corrected Bi-directional reflectance distribution function Adjusted Reflectance (NBAR). 2) NBART Surface Reflectance which performs the same function as NBAR Surface Reflectance, but also applies terrain illumination correction. 3) OA Observation Attributes product which provides accurate and reliable contextual information about the data. This 'data provenance' provides a chain of information which allows the data to be replicated or utilised by derivative applications. It takes a number of different forms, including satellite, solar and surface geometry and classification attribution labels. ARD enables generation of Derivative Data and information products that represent biophysical parameters, either summarised as statistics, or as observations, which underpin an understanding of environmental dynamics. The development of derivative products to monitor land, inland waterways and coastal features, such as: - urban growth - coastal habitats - mining activities - agricultural activity (e.g. pastoral, irrigated cropping, rain-fed cropping) - water extent Derivative products include: - Water Observations from Space (WOfS) - National Intertidal Digital Elevation Model (NIDEM) - Fractional Cover (FC) - Geomedian ARD and Derivative products are reproduced through a period collection upgrade process for each sensor platform. This process applied improvements to the algorithms and techniques and benefits from improvements applied to the baseline data that feeds into the ARD production processes. <b>Value: </b>These data are used to understand distributions of and changes in surface character, environmental systems, land use. <b>Scope: </b>Australian mainland and some part of adjacent nations. Access data via the DEA web page - <a href="https://www.dea.ga.gov.au/products/baseline-data">https://www.dea.ga.gov.au/products/baseline-data</a>

  • The Bonaparte and Browse Basins 3D seismic derived bathymetry compilation (20220002C) was produced by the University of Western Australia, Norwegian Geotechnical Institute and UniLasalle in collaboration with Geoscience Australia through the AusSeabed initiative. The compilation integrates 127 bathymetry grids derived from available and workable 3D seismic datasets into a 30 m resolution 32-bit geotiff. A detailed workflow is described in: Lebrec, U., Paumard, V., O'Leary, M. J., and Lang, S. C., 2021, Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets: Earth System Science Data, v. 13, no. 11, p. 5191-5212 https://doi.org/10.5194/essd-13-5191-2021, 2021. This dataset is not to be used for navigational purposes.

  • <div>A package of deliverables for the Australian Research Data Commons (ARDC), Bushfire History Data Project, Work Package 5. If you require further information or access, please contact earth.observation@ga.gov.au</div><div><br></div><div>Outputs generated for this Project are interim and represent a snapshot of work to date, as of September 2023. Deliverables are developmental in nature and are under further advancement. Datasets or visualisations should not be treated as endorsed, authoritative, or quality assured; and should not be used for anything other than a minimal viable product, especially not for safety of life decisions. The eventual purpose of this information is for strategic decisions, rather than tactical decisions. For local data, updates and alerts, please refer to your State or Territory emergency or fire service.</div><div><br></div><div>The purpose of this Project (WP5) was to generate fire history products from Earth observation (EO) data available from the Landsat and Sentinel-2 satellites. WP5 aimed to implement a suite of automated EO-based algorithms currently in use by State and Territory agencies, to produce National-scale data products describing the timing, location, and extent of bushfires across Australia. WP5 outputs are published here as a “deliverable package”, listed as documents, datasets and Jupyter notebooks.&nbsp;</div><div><br></div><div>Burnt area data demonstrators were produced to a Minimum Viable Product level. Four burnt area detection methods were investigated: </div><div>* BurnCube (Geoscience Australia, ANU, (Renzullo et al. 2019)),</div><div>* Burnt Area Characteristics (Geoscience Australia, unpublished methodology),</div><div>* A version of the Victoria’s Random Forest (Victorian, Tasmanian and New South Wales Governments). Based on method as described in Collins et al. (2018), and</div><div>* Queensland’s RapidFire (Queensland Government, (Van den Berg et al. 2021). Please note that demonstrator burnt area data from the Queensland method was only investigated for the Queensland location. Data were sourced from Terrestrial Ecosystem Research Network (TERN) infrastructure, which is enabled by the Australian Government National Collaborative Research Infrastructure Strategy (NCRIS). </div><div><br></div><div>In addition demonstrator products that examine the use of Near Real Time satellite data to map burnt area, data quality and data uncertainty were delivered. </div><div><br></div><div>The algorithms were tested on several study sites:</div><div>* Eastern Victoria,</div><div>* Cooktown QLD,</div><div>* Kangaroo Island SA,</div><div>* Port Hedland WA, and</div><div>* Esperance WA.</div><div><br></div><div>The BurnCube (Renzullo et al. 2019) method was implemented at a national-scale using the Historic Burnt Area Processing Pipeline documented below “GA-ARDC-DataProcessingPipeline.pdf”. Continental-scale interim summary results were generated for both 2020 Calendar Year and 2020 Financial Year. Results were based upon both Landsat 8 and Sentinel-2 (combined 2a and 2b) satellite outputs, producing four separate interim products:&nbsp;</div><div>* Landsat 8, 2020 Calendar Year, BurnCube Summary (ga_ls8c_nbart_bc_cyear_3),</div><div>* Landsat 8, 2020 Financial Year, BurnCube Summary (ga_ls8c_nbart_bc_fyear_3),</div><div>* Sentinel 2a and 2b, 2020 Calendar Year, BurnCube Summary (ga_s2_ard_bc_cyear_3),</div><div>* Sentinel 2a and 2b, 2020 Financial Year, BurnCube Summary (ga_s2_ard_bc_fyear_3).</div><div>&nbsp;</div><div>The other methods have sample products for the study sites, as discussed in the "lineage" section. </div><div><br></div><div>The Earth observation approach has several limitations, leading to errors of omission and commission (ie under estimation and over estimation of the burnt area). Omission errors can result from: lack of visibility due to clouds; small or patchy fires; rapid vegetation regrowth between fire and satellite observation; cool understorey burns being hidden by the vegetation canopy. Commission errors can result from: incorrect cloud or cloud-shadow masking; high-intensity land-use changes (such as cropping); areas of inundation. In addition cloud and shadow masking lead to differences in elapsed time between reference imagery and observations of change resulting in differences in burn area detection. For more information on data caveats please see Section 7.6 of DRAFT-ARDC-WP5-HistoricBurntArea.</div><div><br></div><div>The official Project title is: The Australian Research Data Commons (ARDC), Bushfire Data Challenges Program; Project Stream 1: the ARDC Bushfire History Data Project; Work Package 5 (WP5): National burnt area products analysed from Landsat and Sentinel 2 satellite imagery.</div><div><br></div><div>We thank the Mindaroo Foundation and ARDC for their support in this work.</div>

  • The Barest Earth Sentinel-2 Map Index web map service depicts the 1 to 250 000 maps sheet tile frames that have been used to generate individual tile downloads of the Barest Earth Sentinel-2 product. This web service is designed to be used in conjunction with the Barest Earth Sentinel-2 web service to provide users with direct links for imagery download.

  • <div>The Kimberley Region and WA Reefs Bathymetry was derived by EOMAP form multispectral satellite data from the European Space Agency’s Sentinel-2 satellite sensor. EOMAP was contracted by Geoscience Australia (GA) to provide high-resolution (10m) Satellite-Derived Bathymetry (SDB) for the Priority Australian Seabed Mapping Sites. The survey area encompasses an area within Kimberley Region in Western Australia which includes Ashmore Reef, Browse Island, Cartier Island, Clerke Reef, Cunningham Island, Mermaid Reef, Scott Reef and Seringapatam Reef. These critical geospatial data layers provide the essential environmental baseline information for the long-term monitoring and management of these Marine Parks. Mapping the shallow water zone is of importance both from an environmental and socioeconomic perspective. Having access to digital, georeferenced, high-resolution maps of bathymetry and benthic habitats of shallow water areas, is of fundamental use in the areas of navigation, ecological research, environmental modelling, management and conservation, and monitoring the impacts from climate change. Bathymetry data was processed using the physics-based inversion method to derive quantitative information of the shallow water bathymetry using the reflected sunlight energy in different wavelengths of the visible and near infrared region. A detailed delivery report is provided in: Delivery Report: Satellite-Derived Bathymetry, Priority Australian Seabed Mapping Sites. Reference: 20220304.0888. EOMAP Australia Pty Ltd. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.</div>

  • The Barest Earth Sentinel-2 Map Index dataset depicts the 1 to 250 000 maps sheet tile frames that have been used to generate individual tile downloads of the Barest Earth Sentinel-2 product. This web service is designed to be used in conjunction with the Barest Earth Sentinel-2 web service to provide users with direct links for imagery download.

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.