Organic
Type of resources
Keywords
Publication year
Service types
Topics
-
The Cooper Basin is Australia's premier onshore hydrocarbon producing province and hosts a range of conventional and unconventional gas play types. This study investigates the petroleum generation potential of the basin's major Permian source rocks, to improve regional understanding of the basin's hydrocarbon prospectivity. Source rock distribution, thickness, present-day amount of total organic carbon (TOC), quality (Hydrogen Index) and maturity were mapped across the basin, together with original source quality maps prior to the on-set of generation. Results of the source rock property mapping and basin-specific kinetics were integrated with 1D burial and thermal history models and a 3D basin model to create a regional pseudo-3D petroleum system model for the basin. The modelling outputs quantify the spatial distribution of both the maximum possible hydrocarbon yield, as well as the oil/ gas expelled and retained, for ten Permian source rocks. Monte Carlo simulations were used to quantify the uncertainty associated with hydrocarbon yields and to highlight the sensitivity of results to each input parameter. The principal source rocks are the Permian coal and coaly shales of the Gidgealpa Group, with highest potential yields from the Patchawarra Formation coals and coaly shales. The broad extent of the Cooper Basin's Permian source kitchen and its large total generation potential (P50 scenario >2000 bboe) highlights the basin¿s significance as a world-class hydrocarbon province. The difference between the P90 (~800 bboe) and P10 (>4000 bboe) scenarios demonstrate the range of uncertainties inherent in this modelling.
-
<p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies (NWMES) section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and facilitate exploration investment in Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) wells in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, a range of organic geochemical analyses were acquired on two crude oils from the Phoenix South 1 ST2 well with these data released in this dataset.
-
A regional hydrocarbon prospectivity study was undertaken in the onshore Canning Basin in Western Australia as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to driving investment in resource exploration. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well, and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Barnicarndy 1, was drilled in 2019 in a partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the Barnicarndy Graben, 67 km west of Telfer, in the southwest Canning Basin. Drilling recovered about 2100 m of continuous core from 580 mRT to the driller’s total depth (TD) of 2680.53 mRT. An extensive analytical program was carried out to characterise the lithology, age and depositional environment of these sediments. This data release presents organic geochemical analyses undertaken on rock extracts obtained from cores selected from the Barnicarndy 1 well. The molecular and stable isotope data carbon and hydrogen will be used to understand the type of organic matter being preserved, the depositional facies and thermal maturity of the Lower Ordovician sedimentary rocks penetrated in this well. This information provides complementary information to other datasets including organic petrological and palynological studies.
-
<b>Legacy service retired 29/11/2022 IMPORTANT NOTICE:</b> This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.
-
A regional hydrocarbon prospectivity study was undertaken in the onshore Canning Basin in Western Australia as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to driving investment in resource exploration. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of stratigraphic wells and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Barnicarndy 1, was drilled in 2019 in partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the Barnicarndy Graben, 67 km west of Telfer, in the South West Canning Basin. Drilling recovered about 2100 m of continuous core from 580 mRT to the total driller’s depth (TD) of 2680.53 mRT (Normore and Rapaic, 2020). An extensive analytical program was carried out to characterise the lithology, age and depositional environment of these sediments. This included detailed organic geochemistry including isotopic and biomarker analyses of core samples. In order to determine the possible presence of organic contaminants in core samples that may jeopardise interpretation of results, manufactured products used during drilling and sample processing were identified as potential sources of hydrocarbon contamination and were investigated for their hydrocarbon content. In addition, in order to test if any hydrocarbon contamination was occurring due to contact with these manufactured products, water samples from the sumps and surface samples of drill muds from specific depths were collected and analysed as well.
-
<b> Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.
-
The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Offshore Energy Studies section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and facilitate exploration investment in Australia. The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018), Dorado 1 (2018), Dorado 2 (2019) and Dorado 3 (2019) wells in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata (Thompson, 2020; Thompson et al., 2015 and 2018). The current study aims to better understand this new petroleum system and establish its extent. As part of this program, a range of organic geochemical analyses were acquired on source rocks from the Roc 2 well with these data released in this report.
-
Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>
-
Geoscience Australia and its predecessors have analysed hydrochemistry of water sampled from boreholes (both pore water and groundwater), surface features, and rainwater. Sampling was undertaken during drilling or monitoring projects, and this dataset represents a significant subset of stored analyses. Water chemistry including isotopic data is essential to better understand groundwater origins, ages and dynamics, processes such as recharge and inter-aquifer connectivity and for informing conceptual and numerical groundwater models. This GA dataset underpins a nationally consistent data delivery tool and web-based mapping to visualise, analyse and download groundwater chemistry and environmental isotope data. This dataset is a spatially-enabled groundwater hydrochemistry database based on hydrochemistry data from projects completed in Geoscience Australia. The database includes information on physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. Basic calculations for piper plots colours are derived from Peeters, 2013 - A Background Color Scheme for Piper Plots to Spatially Visualize Hydrochemical Patterns - Groundwater, Volume 52(1) <https://doi.org/10.1111/gwat.12118>. Upon loading the data to the database, all hydrochemistry data are assessed for reliability using Quality Assurance/Quality Control procedures and all datasets were standardised. This data is made accessible with open geospatial consortium (OGC) web services and is discoverable via the Geoscience Australia Portal (<a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a>). This dataset is published with the permission of the CEO, Geoscience Australia.