From 1 - 10 / 54
  • Segmented time series data for earthquake events. Data are in raw digital counts and have associated instrument metadata for calibration to physical ground-motion measures. These data are used to inform a range of applications in seismic hazard assessment and for assessing the utility of current observatory practice for magnitude assessment. <b>Value: </b>Used in the selection and development of ground-motion models used for seismic hazard purposes. These data also enable the assessment and development of new earthquake magnitude formulae. <b>Scope: </b>Data has been collected on an ad hoc basis, some early digital data dates back to 1989 (i.e. Newcastle earthquake), and the dataset continues to grow as earthquakes of interest occur, or various temporary deployments are rolled out. Instrument metadata is not always known.

  • This collection includes calibrated time-series data and other products from Geoscience Australia's geomagnetic observatory network in Australia and Antarctica. Data dates back to 1924. <b>Value: </b>These data are used in mathematical models of the geomagnetic field, in resource exploration and exploitation, to monitor space weather, and for scientific research. The resulting information can be used for compass-based navigation, magnetic direction finding, and to help protect communities by mitigating the potential hazards generated by magnetic storms. <b>Scope: </b>Continuous geomagnetic time series data, indices of magnetic activity and associated metadata, Data dates back to 1924.

  • Time series seismograph data recorded from Australian National Seismograph Network (ANSN) observatories in Australia, islands in the Pacific, Southern and Indian Ocean's and the Australian Antarctic Territory. <b>Value: </b>This data is used for earthquake monitoring, measurement, detection and location of earthquakes, which is valuable for emergency response, hazard modelling and mitigation. The dataset is also used to meet a subset of Australia's obligations to the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) to fulfil Australia's commitment to nuclear explosion monitoring. <b>Scope: </b>Observatories in Australia, islands in the Pacific, Southern and Indian Ocean's and the Australian Antarctic Territory

  • Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The gravity data collection contains both onshore and offshore data acquired on geophysical surveys conducted by Commonwealth, State & NT Governments and the private sector. <b>Value: </b>Gravity used to infer (model) the presence and position of different rock types in the subsurface. Used in resource assessment <b>Scope: </b>Australia continent and some data from marine surveys in region

  • The collection includes 17,247 measurements of temperature and temperature gradients collected down 5513 individual wells. This information formed the basis for the 'OZTemp Interpreted Temperature at 5km Depth' image of Australia <b>Value: </b>These observations are used to assess heat flow which can be used to infer deep geologic structure, which is valuable for exploration and reconstructions of Australia's evolution <b>Scope: </b>Nationwide collection corresponding to accessible boreholes and published measurements

  • Survey Data captured after severe natural hazard events covering a range of hazards with specific attributes. This observational information is used as input data to assessing vulnerability to natural hazard, but is not made available in its raw form. <b>Value: </b>Used to assess impacts from natural disasters and thereby reduce future risks. <b>Scope: </b>Australia, data from Papua New Guinea, Indonesian province of West Sumatra (Padang) and New Zealand

  • Parametric dataset of earthquakes in the Australian region, with magnitudes greater than 2.5. Includes records of instrumentally recorded earthquakes and explosions, and earthquake parameters inferred from historic documents. Threshold magnitude of completeness varies spatially and temporally. <b>Value: </b>This data has historic value, and is used in assessment of earthquake hazard, risk and potential impacts from future events. <b>Scope: </b>A catalogue of known historical earthquakes in Australia and adjacent regions.

  • Descriptions of and measurements from field sites and samples from geological (including regolith) surveys. <b>Value: </b>Used to constrained surface geology, important in resource exploration and understanding physical environment. <b>Scope: </b>Mapping surveys mainly in Australia, but also in Antarctica, Oceania and south-east Asia.

  • Collection of mineral, gem, meteorite, fossil (including the Commonwealth Palaeontological Collection) and petrographic thin section specimens dating back to the early 1900s. The collection is of scientific, historic, aesthetic, and social significance. Geoscience Australia is responsible for the management and preservation of the collection, as well as facilitating access to the collection for research, and geoscience education and outreach. Over 700 specimens from the collection are displayed in our public gallery . The collection contains: • 15,000 gem, mineral and meteorite specimens from localities in Australia and across the globe. • 45,000 published palaeontological specimens contained in the Commonwealth Palaeontological Collection (CPC) mainly from Australia. • 1,000,000 unpublished fossils in a ‘Bulk Fossil’ collection. • 250,000 petrographic thin section slides. • 200 historical geoscience instruments including: cartography, geophysical, and laboratory equipment." <b>Value: </b>Specimens in the collection are derived from Geoscience Australia (GA) surveys, submissions by researchers, donations, purchases and bequests. A number of mineral specimens are held on behalf of the National Museum of Australia. <b>Scope: </b>This is a national collection that began in the early 1900s with early Commonwealth surveys collecting material across the country and British territories. The mineral specimens are mainly from across Australia, with a strong representation from major mineral deposits such as Broken Hill, and almost 40% from the rest of the world. The majority of fossils are from Australia, with a small proportion from lands historically or currently under Australian control, such as Papua New Guinea and the Australian Antarctic Territory.

  • This data collection is comprised of radiometric (gamma-ray spectrometric) surveys acquired across Australia by Commonwealth, State and Northern Territory governments and the private sector with project management and quality control undertaken by Geoscience Australia. The radiometric method measures naturally occurring radioactivity arising from gamma-rays. In particular, the method is able to identify the presence of the radioactive isotopes potassium (K), uranium (U) and thorium (Th). The measured radioactivity is then converted into concentrations of the radioelements K, U and Th in the ground. Radiometric surveys have a limited ability to see into the subsurface with the measured radioactivity originating from top few centimetres of the ground. These surveys are primarily used as a geological mapping tool as changes in rock and soil type are often accompanied by changes in the concentrations of the radioactive isotopes of K, U and Th. The method is also capable of directly detecting mineral deposits. For example, K alteration can be detected using the radiometric method and is often associated with hydrothermal ore deposits. Similarly, the method is also used for U and Th exploration, heat flow studies, and environmental mapping purposes such as characterising surface drainage features. The instrument used in radiometric surveys is a gamma-ray spectrometer. This instrument measures the number of radioactive emissions (measured in counts per second) and their energies (measured in electron volts (eV)). Radiometric data are simultaneously acquired with magnetic data during airborne surveys and are a non-invasive method for investigating near-surface geology and regolith.