CERF
Type of resources
Keywords
Publication year
Topics
-
Williams et al. (2009) report on new multibeam sonar bathymetry and underwater video data collected from submarine canyons and seamounts on Australia's southeast continental margin to 'investigate the degree to which geomorphic features act as surrogates for benthic megafaunal biodiversity' (p. 214). The authors describe what they view as deficiencies in the design of the Marine Protected Areas (MPAs) in the southeast region of Australia, in which geomorphology information was employed as a surrogate to infer regional-scale patterns of benthic biodiversity. This comment is designed to support and underscore the importance of evaluating MPA designs and the validity of using abiotic surrogates such as geomorphology to infer biodiversity patterns, and seeks to clarify some of the discrepancies in geomorphic terminologies and approaches used between the original study and the Williams et al. (2009) evaluation. It is our opinion that the MPA design criteria used by the Australian Government are incorrectly reported by Williams et al. (2009). In particular, we emphasise the necessity for consistent terminology and approaches when undertaking comparative analyses of geomorphic features. We show that the MPA selection criteria used by the Australian Government addressed the issues of false homogeneity described by Williams et al. (2009), but that final placement of MPAs was based on additional stakeholder considerations. Finally, we argue that although the Williams et al. (2009) study provides valuable information on biological distributions within seamounts and canyons, the hypothesis that geomorphic features (particularly seamounts and submarine canyons) are surrogates for benthic biodiversity is not tested explicitly by their study.
-
This study investigated the surrogacy relationships between marine physical variables and the distribution of marine infauna species and measures of benthic biodiversity across the continental shelf offshore from Ningaloo Reef, Western Australia. The three study areas are located at Mandu Creek, Point Cloates and Gnaraloo covering a combined area of 1038 km2. The physical variables include morphometric variables derived from multibeam bathymetry data, texture measures derived from acoustic backscatter data, sediment variables from 265 samples, seabed exposure estimates and geomorphic feature types. Together, these data were used to model total abundance and species richness, and 10 individual infauna species using a Random Forest Decision Tree. The key findings are: - Generally, the surrogacy relationships are stronger at Gnaraloo than at Mandu and Point Cloates. This is likely due to the fact that Gnaraloo is dominated by soft sediment and Point Cloates and Mandu have larger areas of hard substrates which preclude infauna. - At Gnaraloo, the most important physical surrogates were the sediment variables. - At Point Cloates, the most important physical surrogates were the bathymetry-derived parameters including seabed heterogeneity, morphological position, and slope. - At Mandu, the most important physical surrogates were the mixture of the bathymetry- derived parameters including morphological position and geomorphic features, and the sediment variables including gravel content, and backscatter derived texture measures. - Seabed exposure was not a useful physical surrogate for the infauna distribution in this study. The likely reasons are not clear, but could be a function of the grid resolution (150 m) of the hydrodynamic model used to generate the exposure variable relative to infaunal patterns; or that the infauna species are protected by the sediment from seabed disturbance.
-
The Carnarvon Shelf Survey (SOL4769, GA survey #0308) was conducted on the R.V. Solander in collaboration with the Australian Institute of Marine Science between 12 August and 15 September 2008. The survey was operated as part of the Surrogates Program of the CERF Marine Biodiversity Hub. The survey was completed under a Memorandum of Understanding between GA and the AIMS and represents the first of three surveys planned under this agreement. The objective was to collect high-quality, accurately co-located data to enable the robust testing of a range of physical parameters as surrogates of patterns of benthic biodiversity. Underwater video footage and still images were collected from 122 stations from water depths of 13-125 m, although video quality varies among transects and some still images were not of suitable quality for analysis. Images from the still camera can be found in 'Image Library', and images from towed video screen captures can be found in 'Tow Video Stills'. Image files from screen captures are named according to area (1 = Mandu, 2 = Point Cloates, 3 = Gnarloo) followed by the station number and video identifier (TVA1). For example, 2_032TVA1 would represent a towed video transect from Station 32 at Point Cloates. See GA Record 2009/02 (Geocat #68525) for further details. Video footage was recorded to mini DV tapes, and copied to digital format. The original mini DV tapes are archived at AIMS-WA.
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 110 sample data-set comprises salinity, dissolved oxygen, water temperature and light attenuation (KD) measurements from Jervis Bay.
-
Geoscience Australia carried out a marine survey on Lord Howe Island shelf (NSW) in 2008 (SS062008) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, rock coring, observation of benthic habitats using underwater towed video, and measurement of ocean tides and wavegenerated currents. Subbottom profile data was also collected to map sediment thickness and shelf stratigraphy. Data and samples were acquired using the National Facility Research Vessel Southern Surveyor. Bathymetric data from this survey was merged with other preexisting bathymetric data (including LADS) to generate a grid covering 1034 sq km. As part of a separate Geoscience Australia survey in 2007 (TAN0713), an oceanographic mooring was deployed on the northern edge of Lord Howe Island shelf. The mooring was recovered during the 2008 survey following a 6 month deployment. lh_4m is an ArcInfo grid of the Lord Howe survey area produced from the processed EM300 bathymetry data of the survey area using the CARIS HIPS and SIPS software.
-
Field and supplementary environmental data for the Marine Biodiversity Hub Description: The directory contains the following datasets. 1. Multibeam acoustic data (both backscatter and bathymetry) for three field areas: Jervis Bay, Carnarvon Shelf, and Southern Tasmanian Shelf. 2. Marine environmental data at the Australian continental scale. 3. Side scan data for three regions: Fitzroy, Jervis Bay and Keppel Bay. 4. CARS and Ocean Color datasets obtained from CSIRO. 5. AUV data for the Tasmanian survey (October 2008). These datasets were collected from various field surveys and project partners for the research of Marine Biodiversity Hub. Please contact the CERF project team for further information.
-
Several surveys to Jervis Bay, NSW were conducted between 2008 and 2009 to trial newly acquired Multibeam and video equipment, and to collect bathymetry and backscatter data, and characterise the benthic habitats and biota of Jervis Bay. During this time, two video surveys were conducted during the 17-20th June 2008 (GA survey #0312) and 25-26th August 2008 (GA survey #0309) in the south-eastern corner of Jervis Bay, NSW (off Darling Road) in water depths of 5-30 m. Video transects were run alongshore (4 x 6 km transects) and offshore (6 x 3 km transects) to map the spatial distributions of benthic habitats and biota. Video footage was recorded to mini DV tapes, and copied to digital format. For further information on this survey please refer to the post-survey report (GA Record 2009/10 - Geocat #68383). In addition, a drop-camera survey was conducted during 23 - 26 November 2009 to collect still colour photographs on the seabed at 24 stations throughout Jervis Bay (bounding coordinates 35.0045°S, 150.6884°E to -35.1262°S, 150.7868°E. MISSING Tara's main video files.
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. Sample/species matrix of infaunal taxa derived from Van Veen grab samples taken on the HMS Kimbla surveys GA0312 and GA0315 in Jervis Bay.
-
Understanding marine biodiversity has received much attention from an ecological and conservation management perspectives. The Australian Government's Department of the Environment, Water, Heritage and the Arts has initiated the Commonwealth Environment Research Facilities (CERF) initiative to enhance the understanding of Australia's natural environment for policy making. One part of the CERF initiative through the marine biodiversity hub was to predict biodivesity from expansive physical variables. This talk presents some of the work arising from this area.
-
The overarching theme of this book (and for the GeoHab organisation in general) is that mapping seafloor geomorphic features is useful for understanding benthic habitats. Many of the case studies in this volume demonstrate that geomorphic feature type is a powerful surrogate for associated benthic communities. Here we provide a brief overview of the major geomorphic features that are described in the detailed case studies (which follow in Part II of this book). Starting from the coast we will consider sandy temperate coasts, rocky temperate coasts, estuaries and fjords, barrier islands and glaciated coasts. Moving offshore onto the continental shelf we will consider sandbanks, sandwaves, rocky ridges, shallow banks, coral reefs, shelf valleys and other shelf habitats. Finally, on the continental slope and deep ocean environments we will review the general geomorphology and associated habitats of escarpments, submarine canyons, seamounts, plateaus and deep sea vent communities.