From 1 - 10 / 37
  • In April 2015 Geoscience Australia (GA) acquired 908 km (full-fold) Gippsland Southern Margin Infill 2D Seismic data using Gardline's M/V Duke. The survey is designed to better resolve the Foster Fault System and provide better integration between the GDPI10 survey and the existing surveys in the central deep. The data underwent pre-stack depth migration with a deghosting algorithm during processing. The dataset includes intermediate processing products as well as final preSTM and preSDM and associated velocities.

  • The Cocos Keeling Islands Geographic Information System (CocosGIS) is a collection of spatial data, viewing & analysis tools dealing with the Cocos Keeling Islands. The data includes orthophotography, topography, culture and envrionment features of both of the islands and the areas immediately surrounding them.

  • A contoured (interval 10m) general reference map of the island showing settlement, mining areas, railways, roads and tracks of the Cocos / Keeling Islands.

  • This Record forms part of a study under the Exploring For The Future (EFTF) program (2020-2024). The Residual Oil Zone Project was designed to understand and identify residual oil zones in Australia, with the aim of developing this potential hydrocarbon and CO2 geological storage resource through CO2–Enhanced Oil Recovery. The work presented here is a collaborative study between Geoscience Australia and GeoGem Consultants. Residual Oil Zones (ROZ) represent a new and potentially viable oil resource for Australia, while at the same time providing a means to use and store carbon dioxide (CO2) through the application of CO2 enhanced oil recovery (CO2-EOR). These naturally water-flooded and water-saturated reservoirs, which contain a moderate amount of residual oil, can be associated with conventional fields (brownfields) or occur with no associated main pay zone (greenfields). Both types of ROZ are currently produced commercially through CO2-EOR in the USA, and are of growing interest internationally, but have not yet been explored in Australia. CO2-EOR has been in widespread practice in the USA since the oil shocks of the 1970’s. While tertiary CO2 injection usually targets oil remaining in fields that have been subject to water-flooding, there has been a parallel adoption of practices to recover vast amounts of paleo-oil that existed when many of these reservoirs were much fuller, before relatively recent (in geologic time) events caused structural and seal changes, resulting in natural water-flooding and/or migration of much of the oil out of the reservoir. The Permian Basin in Texas contains many examples where such Residual Oil Zones (ROZ’s) were found beneath conventional oil reservoirs. These ROZ are unproductive to conventional water flood operations but offer the possibility of an extra 9-15% recovery (of the ROZ OIP at discovery). This work reviews the lessons or insights that can be gained from the USA regarding ROZ field developments.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Galilee Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Galilee Basin. The geological storage of CO2 assessment for the Galilee Basin encompasses 5 geological intervals, termed plays – these have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 4 components required for a potential geological storage of CO2 system. One hundred and sixty-three boreholes in the Galilee Basin were used to map out gross depositional environments and their geological properties relevant for geological storage of CO2. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of carbon dioxide system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of carbon dioxide prospectivity across the basin at both a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Betts Creek-Rewan Play interval.

  • Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Cooper Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the Cooper Basin region based on trusted information sources. It provides important contextual information on the Cooper Basin and where additional details on discovered resources can be found. To date, mineral or coal deposits have not been found in the Cooper Basin, due to its depth. There are significant hydrocarbon resources found in the basin, including conventional and unconventional hydrocarbons. The Cooper Basin has been a major producer of oil and gas since the 1960s (Smith, Cassel and Evans, 2015). It is one of the largest sources of onshore hydrocarbon production in Australia. Some of the largest unconventional gas resources are contained in the basin. This is mostly basin-centred gas. The geology in the Cooper Basin is considered suitable for use in Carbon Capture and Storage (CCS) projects. The Cooper Basin and overlying Eromanga Basin contain 2 CCS projects that are currently being developed.

  • Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Galilee Basin region. This data guide illustrates the current understanding of the distribution of these key resource types within the Galilee Basin region based on trusted information sources. It provides important contextual information on the Galilee Basin and where additional details on discovered resources can be found. The Galilee Basin region contains 6 known metallic mineral deposits, with most of these containing the critical mineral vanadium. There are 17 coal deposits found in the basin containing thermal and metallurgical coal. The primary form of coal in the deposits is thermal coal. The Galilee Basin hosts large coal tonnages, with known black coal resources of approximately 33 billion tonnes. The Galilee Basin and overlying basins are known to contain significant hydrocarbon resources. The majority of the known hydrocarbon resources are found in the Julia Creek oil shale deposits located in the Eromanga Basin above the Galilee Basin. Moderate coal seam gas (CSG) resources have also been identified in the basin; however, conventional gas resources are more limited. At this time, there are no active or planned Carbon Capture and Storage (CCS) projects in the basin.

  • Legacy product - no abstract available